1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ksivusya [100]
4 years ago
9

A binary geothermal power plant uses geothermal water at 160°C as the heat source. The cycle operates on the simple Rankine cycl

e with isobutane as the working fluid. Heat is transferred to the cycle by a heat exchanger in which geothermal liquid water enters at 160EC at a rate of 555.9 kg/s and leaves at 90°C. Isobutane enters the turbine at 3.25 MPa and 147°C at a rate of 305.6 kg/s, and leaves at 79.5°C and 410 kPa. Isobutane is condensed in an air-cooled condenser and pumped to the heat exchanger pressure. Assuming the pump to have an isentropic efficiency of 90 percent, determine:
(a) the isentropic efficiency of the turbine,
(b) the net power output of the plant, and
(c) the thermal efficiency of the cycle.
Engineering
2 answers:
bogdanovich [222]4 years ago
7 0

A binary geothermal power operates on the simple Rankine cycle with isobutane as the working fluid. The isentropic efficiency of the turbine, the net power output, and the thermal efficiency of the cycle are to be determined

Assumptions :

1.  Steady operating conditions exist.

2.  Kinetic and potential energy changes are negligible.

Properties:  The specific heat of geothermal water ( c_{geo}[) is taken to be 4.18 kJ/kg.ºC.  

Analysis (a) We need properties of isobutane, we can obtain the properties from EES.

a. Turbine

PP_{3} = 3.25mPa = (3.25*1000) kPa\\= 3250kPa\\from the EES TABLE\\h_{3} = 761.54 kJ/kg\\s_{3} = 2.5457 kJ/kg\\P_{4} = 410kPa\\\\s_{4} = s_{3} \\h_{4s} = 470.40kJ/kg\\\\T_{4} = 179.5^{0} C\\\\h_{4} = 689.74 kJ/KG\\\\ The  isentropic  efficiency, n_{T} = \frac{h_{3}-h_{4}  }{h_{3}- h_{4s} }

==\frac{761.54-689.74}{761.54-670.40} \\=\frac{71.8}{91.14} \\=0.788

b. Pump

h_{1} = h_{f} @ 410kPa = 273.01kJ/kg\\v_{1} = v_{f} @ 410kPa = 0.001842 m^{3}/kgw_{p,in} =  \frac{v_{1}(P_{2}-P_{1})   }{n_{p} } \\\\= \frac{0.01842(3250-410)}{0.9} \\\\ =5.81kJ/kg\\h_{2} =h_{1} + w_{p,in}\\          = 273.01+5.81\\           = 278.82 kJ/kg\\\\w_{T,out} = m^{.}  (h_{3} -h_{4} )\\=(305.6)(761.54-689.74)\\=305.6(71.8)\\=21,942kW\\\\

W^{.} _ {P,in} = m^{.} (h_{2} -h_{1}) \\=m^{.}  w_{p,in \\=305.6(5.81)\\\\=1,777kW\\W^{.}  _{net} = W^{.} _{T, out} - W^{.}  _{P,in} \\= 21,942-1,777\\=20,166 kW\\\\HEAT EXCHANGER\\\\Q_{in} = m^{.} _{geo} c_{geo} (T_{in-T_{out} } )\\=555.9(4.18)(160-90)\\=162.656kW\\

c. The thermal efficiency of the cycle  n_{th}  =\frac{W^{.} _{net} }{Q^{._{in} } } \\\\= \frac{20,166}{162,656} \\=0.124\\=12.4%

balandron [24]4 years ago
7 0

Answer:

a. 34.69%

b. 20165.82 kJ/s

c. 12.4

Explanation:

Assumptions:

1. Ideal rankine cycle

2. Isentropic stage 3-4

3. Isochoric process - constant volume

4. Isobutane is not a monoatomic gas, therefore cv is used for specific heat

a) The turbine stage is from 3 to 4

We know the inlet and outlet temperatures and pressures of the turbine. We can use butane thermodynamic tables to determine the enthalpies of stage 3 and stage 4

s₄=s₃

h₃=761.54kJ/kg

s₃=2.5457kg/kJ

P₄=410kPa

P₃=3250kPa

If it is isentropic whe can find the isentropic enthalpy by using the the entropy value of s₃ and the P₄:

h₄₍s₎ = 470.40 kJ/kg

Using the T₄:

h₄=689.74kJ/kg

The actual work of the turbine is defined as:

Wₐ = m(h₃-h₄)=m(761.54-689.74)=71.8m

Isentropic work = m (h₃-h₄₍s₎)=m(761.54-470.40)=290.84m

Isentropic work = actual work/isentropic work

=71.8/290.84=0.2468

24.68

b)

To work out the total work output we need to determine the work of the pump.

We assume the Pressure is constant through the heat exchanger.

P₁=P₄

h₁ = 273.01 kJ/kg @ 410 kPa

v₁ = 0.001842 m³/kg

Wp,in = mv₁(P₂-P₁)/n

We determine the work of the pump:

Wp,in = 305.6*0.001842*(3250-410)/0.9=1776.26 kJ/s

Wout = Wp,in-Wt = 1776.26-305.6*71.8=20165.82 kJ/s out

c) Thermal efficiency is the Work out divided by the heat put in:

We have the water properties and have h₂ and h₃

Q = 162656 kJ/s

W = 20165.82 kJ/s

n = W/Q = 20165.82/162656=0.1240

You might be interested in
You are given a noninverting 741 op-amp with a dc-gain of 23.6 dB. The input signal to this amplifier is;Vin(t) = (0.18)∙cos(2π(
Vsevolod [243]

Answer:

Output voltage equation is V_{out} (t) = 2.72 \cos (2\pi (57000)t +18.3)

Explanation:

Given:

dc gain A = 23.6 dB

Input signal V_{in} (t) = 0.18 \cos (2\pi (57000)t +18.3)

Now convert gain,

A = 10^{\frac{23.6}{20} } = 15.13

DC gain at frequency f = 0 is given by,

  A = \frac{V_{out} }{V_{in} }

V_{out} =AV_{in}

V_{out} = 15.13 \times   0.18 \cos (2\pi (57000)t +18.3)

At zero frequency above equation is written as,

V_{out} = 2.72 \times \cos 18.3

V_{out} = 2.72

Now we write output voltage as input voltage,

V_{out} (t) = 2.72 \cos (2\pi (57000)t +18.3)

Therefore, output voltage equation is V_{out} (t) = 2.72 \cos (2\pi (57000)t +18.3)

7 0
3 years ago
In the planning process of the product development life cycle what is it important to inventory
Verizon [17]

Your Answer would be A I believe.

6 0
3 years ago
A 3.52 kg steel ball is tossed upward from a height of 6.93 meters above the floor with a vertical velocity of 2.99 m/s. What is
Dafna1 [17]

Answer : The final velocity of the ball is, 12.03 m/s

Explanation :

By the 3rd equation of motion,

v^2-u^2=2as

where,

s = distance covered by the object = 6.93 m

u = initial velocity  = 2.99 m/s

v = final velocity = ?

a = acceleration = 9.8m/s^2

Now put all the given values in the above equation, we get the final velocity of the ball.

v^2-(2.99m/s)^2=2\times (9.8m/s^2)\times (6.93m)

v=12.03m/s

Thus, the final velocity of the ball is, 12.03 m/s

7 0
3 years ago
What is a voltage divider circuit and how do you calculate the voltage across one element in a series
Rama09 [41]
Sorry I don’t know myself
6 0
2 years ago
Select the correct answer.
cricket20 [7]

Answer:

A.

The power generated by a wind farm is not constant because of irregular wind patterns.

5 0
3 years ago
Other questions:
  • How does the modern Diesel engine achieve higher power output without the use of higher compression ratio?
    5·1 answer
  • The screw of shaft straightener exerts a load of 30 as shown in Figure . The screw is square threaded of outside diameter 75 mm
    5·1 answer
  • For an irreversible isothermal process occured in a system with temperature T, which following expression best evaluates the cha
    11·1 answer
  • You doubled the voltage frequency in an RL series AC circuit, the inductive resistance would?
    8·2 answers
  • WHAT IS THE EFFECT OF ICE ACCRETION ON THE LONGITUDINAL STABILITY OF AN AIRCRAFT?
    8·1 answer
  • Carbon dioxide (CO2) expands isothermally at steady state with no irreversibilities through a turbine from 10 bar, 500 K to 2 ba
    15·1 answer
  • 8. What is the density of an object with a mass of 290.5 g and volume of 83 cm 3?​
    13·1 answer
  • Which of these people is an engineer?
    13·1 answer
  • In plumbing what is a video snake used for
    10·2 answers
  • I need to solve for d
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!