1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ksivusya [100]
4 years ago
9

A binary geothermal power plant uses geothermal water at 160°C as the heat source. The cycle operates on the simple Rankine cycl

e with isobutane as the working fluid. Heat is transferred to the cycle by a heat exchanger in which geothermal liquid water enters at 160EC at a rate of 555.9 kg/s and leaves at 90°C. Isobutane enters the turbine at 3.25 MPa and 147°C at a rate of 305.6 kg/s, and leaves at 79.5°C and 410 kPa. Isobutane is condensed in an air-cooled condenser and pumped to the heat exchanger pressure. Assuming the pump to have an isentropic efficiency of 90 percent, determine:
(a) the isentropic efficiency of the turbine,
(b) the net power output of the plant, and
(c) the thermal efficiency of the cycle.
Engineering
2 answers:
bogdanovich [222]4 years ago
7 0

A binary geothermal power operates on the simple Rankine cycle with isobutane as the working fluid. The isentropic efficiency of the turbine, the net power output, and the thermal efficiency of the cycle are to be determined

Assumptions :

1.  Steady operating conditions exist.

2.  Kinetic and potential energy changes are negligible.

Properties:  The specific heat of geothermal water ( c_{geo}[) is taken to be 4.18 kJ/kg.ºC.  

Analysis (a) We need properties of isobutane, we can obtain the properties from EES.

a. Turbine

PP_{3} = 3.25mPa = (3.25*1000) kPa\\= 3250kPa\\from the EES TABLE\\h_{3} = 761.54 kJ/kg\\s_{3} = 2.5457 kJ/kg\\P_{4} = 410kPa\\\\s_{4} = s_{3} \\h_{4s} = 470.40kJ/kg\\\\T_{4} = 179.5^{0} C\\\\h_{4} = 689.74 kJ/KG\\\\ The  isentropic  efficiency, n_{T} = \frac{h_{3}-h_{4}  }{h_{3}- h_{4s} }

==\frac{761.54-689.74}{761.54-670.40} \\=\frac{71.8}{91.14} \\=0.788

b. Pump

h_{1} = h_{f} @ 410kPa = 273.01kJ/kg\\v_{1} = v_{f} @ 410kPa = 0.001842 m^{3}/kgw_{p,in} =  \frac{v_{1}(P_{2}-P_{1})   }{n_{p} } \\\\= \frac{0.01842(3250-410)}{0.9} \\\\ =5.81kJ/kg\\h_{2} =h_{1} + w_{p,in}\\          = 273.01+5.81\\           = 278.82 kJ/kg\\\\w_{T,out} = m^{.}  (h_{3} -h_{4} )\\=(305.6)(761.54-689.74)\\=305.6(71.8)\\=21,942kW\\\\

W^{.} _ {P,in} = m^{.} (h_{2} -h_{1}) \\=m^{.}  w_{p,in \\=305.6(5.81)\\\\=1,777kW\\W^{.}  _{net} = W^{.} _{T, out} - W^{.}  _{P,in} \\= 21,942-1,777\\=20,166 kW\\\\HEAT EXCHANGER\\\\Q_{in} = m^{.} _{geo} c_{geo} (T_{in-T_{out} } )\\=555.9(4.18)(160-90)\\=162.656kW\\

c. The thermal efficiency of the cycle  n_{th}  =\frac{W^{.} _{net} }{Q^{._{in} } } \\\\= \frac{20,166}{162,656} \\=0.124\\=12.4%

balandron [24]4 years ago
7 0

Answer:

a. 34.69%

b. 20165.82 kJ/s

c. 12.4

Explanation:

Assumptions:

1. Ideal rankine cycle

2. Isentropic stage 3-4

3. Isochoric process - constant volume

4. Isobutane is not a monoatomic gas, therefore cv is used for specific heat

a) The turbine stage is from 3 to 4

We know the inlet and outlet temperatures and pressures of the turbine. We can use butane thermodynamic tables to determine the enthalpies of stage 3 and stage 4

s₄=s₃

h₃=761.54kJ/kg

s₃=2.5457kg/kJ

P₄=410kPa

P₃=3250kPa

If it is isentropic whe can find the isentropic enthalpy by using the the entropy value of s₃ and the P₄:

h₄₍s₎ = 470.40 kJ/kg

Using the T₄:

h₄=689.74kJ/kg

The actual work of the turbine is defined as:

Wₐ = m(h₃-h₄)=m(761.54-689.74)=71.8m

Isentropic work = m (h₃-h₄₍s₎)=m(761.54-470.40)=290.84m

Isentropic work = actual work/isentropic work

=71.8/290.84=0.2468

24.68

b)

To work out the total work output we need to determine the work of the pump.

We assume the Pressure is constant through the heat exchanger.

P₁=P₄

h₁ = 273.01 kJ/kg @ 410 kPa

v₁ = 0.001842 m³/kg

Wp,in = mv₁(P₂-P₁)/n

We determine the work of the pump:

Wp,in = 305.6*0.001842*(3250-410)/0.9=1776.26 kJ/s

Wout = Wp,in-Wt = 1776.26-305.6*71.8=20165.82 kJ/s out

c) Thermal efficiency is the Work out divided by the heat put in:

We have the water properties and have h₂ and h₃

Q = 162656 kJ/s

W = 20165.82 kJ/s

n = W/Q = 20165.82/162656=0.1240

You might be interested in
The most important rating for batteries is the what
kifflom [539]

Answer:

I'm completely sure that the answer is: The most important rating for batteries is the ampere-hour rating. Ampere-hour is the battery discharge rating. It's used as a measure of charge in your device. It indicates how long your device will work without charging.

Explanation:

Hope this helped!

7 0
3 years ago
An AX ceramic compound has the rock salt crystal structure. If the radii of the A and X ions are 0.137 and 0.241 nm, respectivel
Tju [1.3M]

Answer:

c) 1.75 g/cm³

Explanation:

Given that

Radii of the A ion, r(c) = 0.137 nm

Radii of the X ion, r(a) = 0.241 nm

Atomic weight of the A ion, A(c) = 22.7 g/mol

Atomic weight of the X ion, A(a) = 91.4 g/mol

Avogadro's number, N = 6.02*10^23 per mol

Solution is attached below

3 0
3 years ago
1. A thin-walled cylindrical pressure vessel is capped at the end and is subjected to an internal pressure (p). The inside diame
Vesna [10]
I DONT KNOW OKAY UGHHH
6 0
3 years ago
List and describe three classifications of burns to the body.
DiKsa [7]

AnswerWhat Are the Classifications of Burns? Burns are classified as first-, second-, or third-degree, depending on how deep and severe they penetrate the skin's surface. First-degree burns affect only the epidermis, or outer layer of skin. The burn site is red, painful, dry, and with no blisters.

Explanation:

8 0
3 years ago
Read 2 more answers
Primary Creep: slope (creep rate) decreases with time
Igoryamba

Answer:

true

Explanation:

Creep is known as the time dependent deformation of structure due to constant load acting on the body.

Creep is generally seen at high temperature.

Due to creep the length of the structure increases which is not fit for serviceability purpose.

When time passes structure gain strength as the structure strength increases with time so creep tends to decrease.

When we talk about Creep rate for new structure the creep will be more than the old structure i.e. the creep rate decreases with time.

5 0
3 years ago
Other questions:
  • Suppose that the president of a small island nation has decided to increase government spending by constructing three beach reso
    11·1 answer
  • Once a design is final engineer needs a plan for product
    14·1 answer
  • Once Joe Martin reports his concerns to senior management at corporate headquarters and requests that the Ethicana plant operati
    8·1 answer
  • If the 1550-lb boom AB, the 190-lb cage BCD, and the 169-lb man have centers of gravity located at points G1, G2 and G3, respect
    11·1 answer
  • A hollow steel tube with an inside diameter of 100 mm must carry a tensile load of 400 kN. Determine the outside diameter of the
    12·2 answers
  • Can I get a hand? Thanks y’all much luv
    13·1 answer
  • Select the correct answer.
    5·1 answer
  • What is the angular velocity (in rad/s) of a body rotating at N r.p.m.?
    13·1 answer
  • A railroad runs form city A to city B, a distance of 800km, through mountainous terrain. The present one-way travel time (includ
    13·1 answer
  • P9.28 A large vacuum tank, held at 60 kPa absolute, sucks sea- level standard air through a converging nozzle whose throat diame
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!