The question is asking whether that statement is true or false. Options are;
A) True
B) False
This is about usage of Swing arm restraints.
<em><u>B) False</u></em>
There are different safety features that people employ when a vehicle is lifted. However, for this question, we will only talk about swing arm restraints.
- Swing arm restraints are lifting restraint devices that are used to prevent a cars arms from shifting or going out of position after that car has been lifted and mounted.
- This swing arm restraint does not prevent a vehicle from falling off a lift as it just helps to ensure that the swing arms that are unloaded basically maintain their position.
Read more at; brainly.com/question/17972874
Answer:
8.85 Ω
Explanation:
Resistance of a wire is:
R = ρL/A
where ρ is resistivity of the material,
L is the length of the wire,
and A is the cross sectional area.
For a round wire, A = πr² = ¼πd².
For aluminum, ρ is 2.65×10⁻⁸ Ωm, or 8.69×10⁻⁸ Ωft.
Given L = 500 ft and d = 0.03 in = 0.0025 ft:
R = (8.69×10⁻⁸ Ωft) (500 ft) / (¼π (0.0025 ft)²)
R = 8.85 Ω
Answer:
a) 3581.15067 kw
b) 95.4%
Explanation:
<u>Given data:</u>
compressor efficiency = 85%
compressor pressure ratio = 10
Air enters at: flow rate of 5m^3/s , pressure = 100kPa, temperature = 300 K
At turbine inlet : pressure = 950 kPa, temperature = 1400k
Turbine efficiency = 88% , exit pressure of turbine = 100 kPa
A) Develop a full accounting of the exergy increase of the air passing through the gas turbine combustor in kW
attached below is a detailed solution to the given question
Answer:
total width bandwidth = 8kHz
Explanation:
given data
transmitter operating = 3.9 MHz
frequencies up to = 4 kHz
solution
we get here upper side frequencies that is
upper side frequencies = 3.9 ×
+ 4 × 10³
upper side frequencies = 3.904 MHz
and
now we get lower side frequencies that is
lower side frequencies = 3.9 ×
- 4 × 10³
lower side frequencies = 3.896 MHz
and now we get total width bandwidth
total width bandwidth = upper side frequencies - lower side frequencies
total width bandwidth = 8kHz
Answer:
Q' = 8 KW.h
Q'=28800 KJ
Explanation:
Given that
Heat Q= 4 KW
time ,t = 2 hours
The amount of energy used in KWh given as
Q ' = Q x t
Q' = 4 x 2 KW.h
Q' = 8 KW.h
We know that
1 h = 60 min = 60 x 60 s = 3600 s
We know that W = 1 J/s
The amount of energy used in KJ given as
Q' = 8 x 3600 = 28800 KJ
Therefore
Q' = 8 KW.h
Q'=28800 KJ