Answer:
Explanation:
We shall find first the velocity of ball at the time when string breaks. Let it be v . During its fall on the ground , 1.02 m below, we use the formula
h = 1/2 gt² where t is time of fall .
1.02 = 1/2 x 9.8 x t²
t²= .2081
t = .456
During this time it travels horizontally at distance of 2.5 m with uniform velocity of v
v x .456 = 2.5
v = 5.48 m /s
centripetal acceleration
= v² / r where r is radius of the circular path
= 5.48² / .478
= 62.82 m /s²
combustion of fossil fuels would be the correct answer when dealing with the alteration of the carbon cycle.
Answer:
T=Lnsin
Please check the attached
Explanation:
The torque can simply be calculated by multiplying the length of the rod by the perpendicular force n as shown in the attached figure.
Note that sin90=1
T=Lsin
(nsin90)
T=Lsin
xn
T=Lnsin
Answer:
Explanation:
The formula to determine the size of a capillary tube is
h = 2•T•Cos θ / r•ρ•g
Where
h = height of liquid level
T = surface tension
r = radius of capillary tube
ρ = density of liquid
θ = angle of contact = 0°
g =acceleration due to gravity=9.81m/s²
The liquid is water then,
ρ = 1000 kg / m³
Given that,
T = 0.0735 N/m
h = 0.25mm = 0.25 × 10^-3m
Then,
r = 2•T•Cos θ / h•ρ•g
r = 2 × 0.0735 × Cos0 / 2.5 × 10^-3 × 1000 × 9.81
r = 5.99 × 10^-3m
Then, r ≈ 6mm
The radius of the capillary tube is 6mm
So, the minimum size is
Volume = πr²h
Volume = π × 6² × 0.25
V = 2.83 mm³
The minimum size of the capillary tube is 2.83mm³
Answer:
M=28.88 gm/mol
Explanation:
Given that
T= 95 K
P= 1.6 atm
V= 4.87 L
m = 28.6 g
R=0.08206L atm .mol .K
We know that gas equation for ideal gas
P V = n R T
P=Pressure , V=Volume ,n=Moles,T= Temperature ,R=gas constant
Now by putting the values
P V = n R T
1.6 x 4.87 = n x 0.08206 x 95
n=0.99 moles
We know that number of moles given as

M=Molar mass


M=28.88 gm/mol