Answer:
Explanation:
For calculating resistance of a conductor , the formula is
R = ρ l / A , ρ is specific resistance , l is length and A is cross sectional area of wire.
For first wire length is l₁ , area is A₁ resistance is R₁, for second resistance is R₂ , length is l₂ and area is A₂
Given , l₁ = 2l₂ , A₁ = 4A₂ , area is proportional to square of thickness.
R₁ / R₂ = I₁A₂ / I₂A₁
= 2l₂ x A₁ / 4 I₂A₁
= 1 / 2
2R₁ = R₂
Power = V² / R
Ratio of power = (V² / R₁) x (R₂ / V²)
= R₂ / R₁
= 2 .
Answer:
For other liquids, solidification when the temperature drops includes the lowering of kinetic energy, which allows molecules to pack more tightly and makes the solid denser than its liquid form. Because ice is less dense than water, it is able to float at the surface of water.
Explanation:
have a great day:)
The answer is kinetic energy
Mass of Tracey M1 = 32 kg
Mass of Jonas M2 = 45 kg
Initially both were at rest
so V1i = V2i =0
after pushing each other Jonas speed V2f = 0.80 m/s
we need to find out final speed of Tracy
Here we can use momentum conservation as no external force is acting here
M1V1i + M2V2i = M1V1f + M2V2f
32(0) + 45(0) = 32 V1f + 45(0.80)
0 = 32 V1f + 36
-36 = 32 V1f
V1f = - 1.125 m/s
negative sign shows that Tracy will move opposite to the Jonas
so answer in two significant figure would be
V1f = 1.1 m/s