Just follow these simple steps:
Fold a rectangular piece of paper so that a square is formed. ...
Cut the square into two triangles.
Take one triangle and fold it in half. ...
Take the other triangle and crease it in the middle. ...
Fold the trapezoid in half and fold again. ...
Fold the remaining small trapezoid and cut it in two.
First, we need the distance of Europe and Wolf-359 from Earth.
- The distance of Europe from Earth is:
- The distance of Wolf-359 from Earth is instead 7.795 light years. However, we need to convert this number into km. 1 light year is the distance covered by the light in 1 year. Keeping in mind that the speed of light is
, and that in 1 year there are
365 days x 24 hours x 60 minutes x 60 seconds =
, the distance between Wolf-359 and Earth is
Now we can calculate the time the spaceship needs to go to Wolf-359, by writing a simple proportion. In fact, we know that the spaceship takes 2 years to cover
, so
from which we find
, the time needed to reach Wolf-359:
Answer:
E = 77532.42N/C
Explanation:
In order to find the magnitude of the electric field for a point that is in between the inner radius and outer radius, you take into account the Gauss' law for the electric flux trough a spherical surface with radius r:
(1)
Q: net charge of the hollow sphere = 1.9*10-6C
ε0: dielectric permittivity of vacuum = 8.85*10^-12 C^2/Nm^2
Furthermore, you have that the net charge contained in a sphere of radius r is:
(2)
with the charge density is:
(3)
r2: outer radius = 0.31m
r1: inner radius = 0.105m
The electric field trough the Gaussian surface is parallel to the normal to the surface, the, you have in the integral of the equation (1):
(4)
where you have used the expression for a surface of a sphere.
Next, you replace the expressions of equations (2), (3) and (4) in the equation (1) and solve for E:
you replace the values of all parameters, and with r = 0.17m
The magnitude of the electric field at a distance r=0.17m to the center of the hollow sphere is 77532.42N/C
Answer:
Ecu/Eag = 0.46
Explanation:
E = PI/A
Ecu = Pcu × I/A
Pcu = 1.72×10^-8 ohm-meter
r = 0.8 mm = 0.8/1000 = 8×10^-4 m
A = πr^2 = π×(8×10^-4)^2 = 6.4×10^-7π
Ecu = 1.72×10^-8I/6.4×10^-7π = 0.026875I/1
Eag = Pag × I/A
Pag = 1.47×10^-8 ohm-meter
r = 0.5 mm = 0.5/1000 = 5×10^-4 m
A = πr^2 = π × (5×10^-4)^2 = 2.5×10^-7π
Eag = 1.47×10^-8I/2.5×10^-7π = 0.0588I/π
Ecu/Eag = 0.026875I/π × π/0.0588I = 0.46
Hello there.
<span>The diagram represents several forms of electromagnetic energy.
Which feature best distinguishes one form of electromagnetic energy from another?
Answer: </span><span>wavelength</span><span>
</span>