Answer:

Explanation:
h = Planck's constant = 
c = Speed of light = 
E = Energy = 
Wavelength ejected is given by

The maximum wavelength in angstroms of the radiation that will eject electrons from the metal is 
To solve this problem we will use the relationship given between the centripetal Force and the Force caused by the weight, with respect to the horizontal and vertical components of the total tension given.
The tension in the vertical plane will be equivalent to the centripetal force therefore

Here,
m = mass
v = Velocity
r = Radius
The tension in the horizontal plane will be subject to the action of the weight, therefore

Matching both expressions with respect to the tension we will have to


Then we have that,


Rearranging to find the velocity we have that

The value of the angle is 14.5°, the acceleration (g) is 9.8m/s^2 and the radius is



Replacing we have that


Therefore the speed of each seat is 4.492m/s
Answer:
h = 618.64 m
Explanation:
First we need to calculate the height gained by rocket while the fuel is burning. We use 2nd equation of motion for that purpose:
h₁ = Vit + (1/2)at²
where,
h₁ = height gained during the burning of fuel
Vi = Initial Velocity = 0 m/s
t = time = 7 s
a = acceleration = 8 m/s²
Therefore,
h₁ = (0 m/s)(7 s) + (1/2)(8 m/s²)(7 s)²
h₁ = 196 m
Now we use 1st equation of motion to find final speed Vf:
Vf = Vi + at
Vf = 0 m/s + (8 m/s²)(7 s)
Vf = 56 m/s
Now, we calculate height covered in free fall motion. Using 3rd equation of motion:
2ah₂ = Vf² - Vi²
where,
a = - 3.71 m/s²
h₂ = height gained during free fall motion = ?
Vf = Final Velocity = 0 m/s (since, rocket will stop at highest point)
Vi = 56 m/s
Therefore,
(2)(-3.71 m/s²)h₂ = (0 m/s)² - (56 m/s)²
h₂ = 422.64 m
So the total height gained will be:
h = h₁ + h₂
h = 196 m + 422.64 m
<u>h = 618.64 m</u>
It will most likely break. The frame is 5 newton's and the string can only hold 2.5 newton's.