Answer:
v_{f} = 74 m/s, F = 230 N
Explanation:
We can work on this exercise using the relationship between momentum and moment
I = ∫ F dt = Δp
bold indicates vectors
we can write this equations in its components
X axis
Fₓ t = m ( -v_{xo})
Y axis
t = m (v_{yf} - v_{yo})
in this case with the ball it travels horizontally v_{yo} = 0
Let's use trigonometry to write the final velocities and the force
sin 30 = v_{yf} / vf
cos 30 = v_{xf} / vf
v_{yf} = vf sin 30
v_{xf} = vf cos 30
sin40 = F_{y} / F
F_{y} = F sin 40
cos 40 = Fₓ / F
Fₓ = F cos 40
let's substitute
F cos 40 t = m ( cos 30 - vₓ₀)
F sin 40 t = m (v_{f} sin 30-0)
we have two equations and two unknowns, so the system can be solved
F cos 40 0.1 = 0.4 (v_{f} cos 30 - 20)
F sin 40 0.1 = 0.4 v_{f} sin 30
we clear fen the second equation and subtitles in the first
F = 4 sin30 /sin40 v_{f}
F = 3.111 v_{f}
(3,111 v_{f}) cos 40 = 4 v_{f} cos 30 - 80
v_{f} (3,111 cos 40 -4 cos30) = - 80
v_{f} (- 1.0812) = - 80
v_{f} = 73.99
v_{f} = 74 m/s
now we can calculate the force
F = 3.111 73.99
F = 230 N
Explanation:
to determine if important scientific results are repeatable
Answer:
at the 90 degree angle... i think
Explanation:
Answer:
Explanation:
We shall apply concept of impulse
Impulse = Force x time
= Force x 2 x 10⁻³ N.s
impulse = change in momentum
change in momentum
= .4 x 4 - ( - .4 x 2 )
= 2.4
Force x 2 x 10⁻³ = 2.4
Force = 2.4 / 2 x 10⁻³
= 1.2 x 10³ N .
average magnitude of the force exerted by floor = 1.2 x 10³ N
If R be reaction force by earth
R - mg = 1.2 x 10³
R = 1.2 x 10³ + mg
= 1200 + .4 x 9.8
= 1200 +3.92
= 1203 .92 N .
Answer:
V=I×R
<em>4</em><em>.</em><em>5</em><em> </em><em>=</em><em> </em><em>I×</em><em>9</em>
<em> </em><em> </em><em> </em><em>I</em><em>.</em><em> </em><em>=</em><em> </em><em>4</em><em>.</em><em>5</em><em>/</em><em>9</em>
<em> </em><em> </em><em> </em><em>I</em><em>. </em><em>=</em><em> </em><em>0</em><em>.</em><em>5</em><em> </em><em>A</em>
<em>curre</em><em>nt</em><em> </em><em>is</em><em> </em><em>0</em><em>.</em><em>5</em><em> </em><em>A</em>