Answer:
jejjdedjd sidjjejdd jsms
Explanation:
jdjdndjdjjdj jsnssjns jsjsjs
Answer:
0.6983 m/s
Explanation:
k = spring constant of the spring = 0.4 N/m
L₀ = Initial length = 11 cm = 0.11 m
L = Final length = 27 cm = 0.27 m
x = stretch in the spring = L - L₀ = 0.27 - 0.11 = 0.16 m
m = mass of the mass attached = 0.021 kg
v = speed of the mass
Using conservation of energy
Kinetic energy of mass = Spring potential energy
(0.5) m v² = (0.5) k x²
m v² = k x²
(0.021) v² = (0.4) (0.16)²
v = 0.6983 m/s
Answer:
Explanation:
Normal length of spring = 28.3 cm
stretched length of spring = 38.2 cm
length of extension = 38.2 - 28.3 = 9.9 cm
= 9.9 x 10⁻² m
force applied to stretch = .55 x 9.8 ( mg )
= 5.39 N
Force constant = force applied / extension
= 5.39 / 9.9 x 10⁻²
= .5444 x 10² N /m
= 54.44 N/m
Answer:
Explanation:
Given:
- spring constant of the spring attached to the input piston,
- mass subjected to the output plunger,
<u>Now, the force due to the mass:</u>
<u>Compression in Spring:</u>
or