Answer:
MRCORRECT has answered the question
Explanation:
Since velocity is a vector, it can change either in magnitude or in direction. Acceleration is therefore a change in either speed ordirection, or both. Keep in mind that althoughacceleration is in the direction of the changein velocity, it is not always in the direction ofmotion.
Hey!
First, let's write the problem.

Subtract the numbers, we would do the following operation,


Add 2 to both sides.

This tells us that our final answer would be,

Thanks!
-TetraFish
Answer:
f = 3.09 Hz
Explanation:
This is a simple harmonic motion exercise where the angular velocity is
w² =
to find the constant (k) of the spring, we use Hooke's law with the initial data
F = - kx
where the force is the weight of the body that is hanging
F = W = m g
we substitute
m g = - k x
k =
we calculate
k =
k = 3.769 10² m
we substitute in the first equation
w² =
w = 19.415 rad / s
angular velocity and frequency are related
w = 2πf
f =
f = 19.415 / 2pi
f = 3.09 Hz
Answer:

☯ Question :
- How fast is a wave travelling if it has a wavelength of 7 meters and a frequency of 11 Hz?
☯ 
☥ Given :
- Wavelength ( λ ) = 7 meters
- Frequency ( f ) = 11 Hz
☥ To find :
☄ We know ,

where ,
- v = speed of sound
- f = frequency
- λ = wavelength
Now, substitute the values and solve for v.
➺ 
➺ 
-------------------------------------------------------------------
✑ Additional Info :
- Frequency : The number of complete vibrations made by a particle of a body in one second is called it's frequency. It is denoted by the letter f . The SI unit of frequency is hertz ( Hz ).
- Wavelength : The distance between two consecutive compressions or rarefactions of a sound wave is called wavelength of that wave. It is denoted by λ ( lambda ) and it's SI unit is m.
- Speed of a sound wave : The distance covered by a sound wave in one second is called speed of sound wave. It depends on the product of wavelength and frequency of the wave.
Hope I helped!
Have a wonderful time! ツ
▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
A contact force is a type of force which act on an object by coming in contact with the object. Examples of contact force that acts through a force field are: applied force, frictional force, air resistance force, tension, spring force, etc.
Examples of forces that act through a force field are gravitational force, electromagnetic force, the weak interaction and the strong interaction.