Explanation:
In order to find out if the keys will reach John or not, we can use the formula of projectile motion to find the maximum height reached by the keys:
H = V²Sin²θ/2g
where,
V = Launch Speed = 18 m/s
θ = Launch Angle = 40°
g = 9.8 m/s²
Therefore,
H = (18 m/s)²[Sin 40°]²/(2)(9.8 m/s²)
H = 6.83 m
Hence, the maximum height that can be reached by the projectile or the keys is greater than the height of John's Balcony(5.33 m).
Therefore, the keys will make it back to John.
 
        
             
        
        
        
The Answer is C. the distance light travels in a year
        
                    
             
        
        
        
Answer:
(C) greater than zero but less than 45° above the horizontal
Explanation:
The range of a projectile is given by R = v²sin2θ/g.
For maximum range, sin2θ = 1 ⇒ 2θ = sin⁻¹(1) = 90°
2θ = 90°
θ = 90°/2 = 45°
So the maximum horizontal distance R is in the range 0 < θ < 45°, if θ is the angle above the horizontal.
 
        
                    
             
        
        
        
A because the girl in that instant is not moving up or down so 
( up forces)=(down forces ) 
The up forces is the tension of the rope and down forces us mg -the gravitational force on the girl by the earth
        
             
        
        
        
Answer:
Explanation:
The angle of incidence and refraction are both measured from the normal
angle of incidence = 30°
angle of refraction = 23°
refractive index(n) = sini / sinr
n = sin30°/sin23°
n = 1.27965
refractive index (n) = 1/sinC
where C is the critical angle.
sinC= 1/n
C =arcsin (1/n)
C =arcsin (1/1.27965)
C = 51.39°