Since the reaction has one mole of reactants versus two moles of products, the reaction would have a decrease in entropy. One mole of gas exerts less pressure than two moles of gas, and therefore one mole of gas has more entropy than two moles of gas.
Hope this helps
Answer:
accepts an H⁺
Explanation:
The following balanced ionic equation is given in this question;
HCl + H₂O → H₃O⁺ + Cl⁻
According to Brønsted–Lowry acid–base theory, a base is any substance that can accept hydrogen ions or protons (H+). Using this definition for the above equation, water (H2O) accepts a proton or H+ that was donated by HCl to form H30+ (hydronium ion), hence, water is acting as a BASE in this reaction because it accepts an H+.
Answer:
umm it does not show what elements but I think its C. number of protons
Alpha decay represents the forceful ejection of two protons and two neutrons from the nucleus of the parent atom. If 214 Po undergoes alpha decay, the equation would be:
214 Po ➡️ 210 Pb + 4 He + energy
Alpha decay is in the form of a helium nucleus, two protons and two neutrons.
Answer: Thus the cell potential of an electrochemical cell is +0.28 V
Explanation:
The calculation of cell potential is done by :

Where both
are standard reduction potentials.
![E^0_{[Fe^{2+}/Fe]}= -0.41V](https://tex.z-dn.net/?f=E%5E0_%7B%5BFe%5E%7B2%2B%7D%2FFe%5D%7D%3D%20-0.41V)
![E^0_{[Pb^{2+}/Pb]}=-0.13V](https://tex.z-dn.net/?f=E%5E0_%7B%5BPb%5E%7B2%2B%7D%2FPb%5D%7D%3D-0.13V)
As Reduction takes place easily if the standard reduction potential is higher(positive) and oxidation takes place easily if the standard reduction potential is less(more negative). Thus iron acts as anode and lead acts as cathode.
![E^0=E^0_{[Pb^{2+}/Pb]}- E^0_{[Fe^{2+}/Fe]}](https://tex.z-dn.net/?f=E%5E0%3DE%5E0_%7B%5BPb%5E%7B2%2B%7D%2FPb%5D%7D-%20E%5E0_%7B%5BFe%5E%7B2%2B%7D%2FFe%5D%7D)

Thus the cell potential of an electrochemical cell is +0.28 V