uhmm, white.
Explanation:
you'll basically look like blind ig
<u>Answer:</u> The standard heat for the given reaction is -138.82 kJ
<u>Explanation:</u>
Enthalpy change is defined as the difference in enthalpies of all the product and the reactants each multiplied with their respective number of moles.
The equation used to calculate enthalpy change is of a reaction is:
![\Delta H^o_{rxn}=\sum [n\times \Delta H_f_{(product)}]-\sum [n\times \Delta H_f_{(reactant)}]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_f_%7B%28product%29%7D%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_f_%7B%28reactant%29%7D%5D)
For the given chemical reaction:

The equation for the enthalpy change of the above reaction is:
![\Delta H_{rxn}=[(3\times \Delta H_f_{(CH_4(g))})+(1\times \Delta H_f_{(CO_2(g))})+(4\times \Delta H_f_{(NH_3(g))})]-[(4\times \Delta H_f_{(CH_3NH_2(g))})+(2\times \Delta H_f_{(H_2O(l))})]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%283%5Ctimes%20%5CDelta%20H_f_%7B%28CH_4%28g%29%29%7D%29%2B%281%5Ctimes%20%5CDelta%20H_f_%7B%28CO_2%28g%29%29%7D%29%2B%284%5Ctimes%20%5CDelta%20H_f_%7B%28NH_3%28g%29%29%7D%29%5D-%5B%284%5Ctimes%20%5CDelta%20H_f_%7B%28CH_3NH_2%28g%29%29%7D%29%2B%282%5Ctimes%20%5CDelta%20H_f_%7B%28H_2O%28l%29%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![\Delta H_{rxn}=[(3\times (-74.8))+(1\times (-393.5))+(4\times (-46.1))]-[(4\times (-22.97))+(2\times (-285.8))]\\\\\Delta H_{rxn}=-138.82kJ](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%283%5Ctimes%20%28-74.8%29%29%2B%281%5Ctimes%20%28-393.5%29%29%2B%284%5Ctimes%20%28-46.1%29%29%5D-%5B%284%5Ctimes%20%28-22.97%29%29%2B%282%5Ctimes%20%28-285.8%29%29%5D%5C%5C%5C%5C%5CDelta%20H_%7Brxn%7D%3D-138.82kJ)
Hence, the standard heat for the given reaction is -138.82 kJ
Answer:
19.4 g of alum, will be its theoretical yield
Explanation:
The reaction is:
2 Al + 2 KOH + 4 H₂SO₄ + 22H₂O → 3H₂ + 2KAl(SO₄)₂•12H₂O
Let's determine the amount of acid.
M are the moles contained in 1 L of solution or it can be mmoles that are contained in 1 mL of solution
M = mmol /mL
M . mL = mmol
We replace: 8.3 mL . 9.9 M = 82.17 mmoles
We convert to moles: 82.17 mmol . 1 mol / 1000mmol = 0.082 moles
Ratio is 4:2
4 moles of sulfuric acid can make 2 moles of alum
By the way, 0.082 moles of acid may produce ( 0.082 . 2) /4 = 0.041085 moles.
We convert moles to mass:
Molar mass of alum is: 473.52 g/mol.
0.041085 moles . 473.52 g/mol = 19.4 g
Answer:
B. Respiration
Explanation:
cellular respiration is the process where cells use glucose (C6H12O6) and oxygen gas (O2) to make carbon dioxide (CO2) water (H2O) and ATP, which is energy
formula:
C6H12O6 + 6O2 -> 6CO2 + 6H20 + 38ATP