Answer:
Oxidation is the loss of electrons, that is, addition of electronegetive elements, example is addition of oxygen. Also, removal of electropositive elements, example is removal of hydrogen.
Explanation: a) In the presence of excess oxygen, propane burns in air, which gives the following chemical equation:
C3H8 + 5O2⇒ 3CO2 + 4H2O +Heat
b) When insufficient oxygen or too much oxygen is present for complete combustion, the following equation is given:
2C3H8 + 9O2 ⇒ 4CO2 + 2CO + 8H2O + Heat
c) At the anode( negative terminal): O∧2- ⇒ O + e
Oxygen accepts electron.
d) At cathode ( positive terminal): H∧+ + e∧- ⇒ H
Hydrogen donates electron
d) Nernst equation for reversal potential is given as follows:
E= RT/zF In{ion outside cell}/{ion inside cell}= 2.303 RT/zF In{ion outside cell}/{ion inside cell}
Question:
a. Diffusion
b. Facilitated diffusion
c. Both
d. Neither
1. movement to area of lower concentration
2. movement across a membrane
3. steroid transport into cell
4. requires energy
5. movement assisted by proteins
6. glucose transport into cell
Answer:
The sorting is as follows
a. (1)
b. (5 and 6)
c. (1 and 2)
d. (4)
Explanation:
Diffusion is the movement of particles across a membrane from a high concentration region to one with a lower concentration of the diffusing substance
Here we have the correct sorting as follows
a. Diffusion
3. steroid transport into cell
b. Facilitated diffusion
5. movement assisted by proteins
6. glucose transport into cell
c. Both
1. movement to area of lower concentration
2. movement across a membrane
d. Neither
4. requires energy
Answer:
The reaction will be non spontaneous at these concentrations.
Explanation:

Expression for an equilibrium constant
:
![K_c=\frac{[Ag^+][Br^-]}{[AgCl]}=\frac{[Ag^+][Br^-]}{1}=[Ag^+][Br^-]](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BAg%5E%2B%5D%5BBr%5E-%5D%7D%7B%5BAgCl%5D%7D%3D%5Cfrac%7B%5BAg%5E%2B%5D%5BBr%5E-%5D%7D%7B1%7D%3D%5BAg%5E%2B%5D%5BBr%5E-%5D)
Solubility product of the reaction:
![K_{sp}=[Ag^+][Br^-]=K_c=7.7\times 10^{-13}](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BAg%5E%2B%5D%5BBr%5E-%5D%3DK_c%3D7.7%5Ctimes%2010%5E%7B-13%7D%20)
Reaction between Gibb's free energy and equilibrium constant if given as:


![\Delta G^o=-2.303\times 8.314 J/K mol\times 298 K\times \log[7.7\times 10^{-13}]](https://tex.z-dn.net/?f=%5CDelta%20G%5Eo%3D-2.303%5Ctimes%208.314%20J%2FK%20mol%5Ctimes%20298%20K%5Ctimes%20%5Clog%5B7.7%5Ctimes%2010%5E%7B-13%7D%5D)

Gibb's free energy when concentration
and ![[Br^-] = 1.0\times 10^{-3} M](https://tex.z-dn.net/?f=%5BBr%5E-%5D%20%3D%201.0%5Ctimes%2010%5E%7B-3%7D%20M)
Reaction quotient of an equilibrium = Q
![Q=[Ag^+][Br^-]=1.0\times 10^{-2} M\times 1.0\times 10^{-3} M=1.0\times 10^{-5}](https://tex.z-dn.net/?f=Q%3D%5BAg%5E%2B%5D%5BBr%5E-%5D%3D1.0%5Ctimes%2010%5E%7B-2%7D%20M%5Ctimes%201.0%5Ctimes%2010%5E%7B-3%7D%20M%3D1.0%5Ctimes%2010%5E%7B-5%7D)

![\Delta G=69.117 kJ/mol+(2.303\times 8.314 Joule/mol K\times 298 K\times \log[1.0\times 10^{-5}])](https://tex.z-dn.net/?f=%5CDelta%20G%3D69.117%20kJ%2Fmol%2B%282.303%5Ctimes%208.314%20Joule%2Fmol%20K%5Ctimes%20298%20K%5Ctimes%20%5Clog%5B1.0%5Ctimes%2010%5E%7B-5%7D%5D%29)

- For reaction to spontaneous reaction:
. - For reaction to non spontaneous reaction:
.
Since ,the value of Gibbs free energy is greater than zero which means reaction will be non spontaneous at these concentrations
Answer: 30 m/s
Explanation:
Use the first kinematic equation for linear motion

Answer:
electrons
Explanation:
By particles im assuming you mean subatomic. The particle with the most energy in this case would be electrons.