Nitric acid (NHO3) because plants need nitrogen to survive, hope this helped.
Ω₀ = the initial angular velocity (from rest)
t = 0.9 s, time for a revolution
θ = 2π rad, the angular distance traveled
Let
α = the angular acceleration
ω = the final angular velocity
The angular rotation obeys the equation
(1/2)*(α rad/s²)*(0.9 s)² = (2π rad)
α = 15.514 rad/s²
The final angular velocity is
ω = (15.514 rad/s²)*(0.9 s) = 13.963 rad/s
If the thrower's arm is r meters long, the tangential velocity of release will be
v = 13.963r m/s
Answer: 13.963 rad/s
It's inertia. A rule that you see every day, for example a brick will stay in the same spot unless a force acts on it.
Answer:

Explanation:
When an electromagnetic wave passes through the interface between two mediums, it undergoes refraction, which means that it bents and its speed and its wavelength change.
In particular, the wavelength of an electromagnetic wave in a certain medium is related to the index of refraction of the medium by:

where
is the wavelength in a vacuum (air is a good approximation of vacuum)
n is the refractive index of the medium
In this problem:
is the original wavelength of the wave
n = 1.47 is the index of refraction of corn oil
Therefore, the wavelength of the electromagnetic wave in corn oil is:

Part A:
For this part we’re assuming all the kinetic energy of the moving bumper car is converted into elastic potential energy in the spring since the car is brought to rest. Therefore you can find the total kinetic energy to get your answer:
KE = ½ mv^2
KE = ½ (200)(8)^2
KE = 6400 J
Part B:
Now you can use Hooke’s law to find the force:
F = kx
F = (5000)(0.2)
F = 1000 N