We have that the values for F north,
F east,
F up are
From the Question we are told that
electric force 
electric force , 
electric force , 
charge on this ball one 
charge on this ball two 
Generally the equation for the F north is mathematically given as


For F East


For F UP


For more information on this visit
brainly.com/question/21811998
Answer:
The magnitude of the force of friction equals the magnitude of my push
Explanation:
Since the crate moves at a constant speed, there is no net acceleration and thus, my push is balanced by the frictional force on the crate. So, the magnitude of the force of friction equals the magnitude of my push.
Let F = push and f = frictional force and f' = net force
F - f = f' since the crate moves at constant speed, acceleration is zero and thus f' = ma = m (0) = 0
So, F - f = 0
Thus, F = f
So, the magnitude of the force of friction equals the magnitude of my push.
Answer:
Explanation:
When the central shaft rotates , the seat along with passenger also rotates . Their rotation requires a centripetal force of mw²R where m is mass of the passenger and w is the angular velocity and R is radius of the circle in which the passenger rotates.
This force is provided by a component of T , the tension in the rope from which the passenger hangs . If θ be the angle the rope makes with horizontal ,
T cos θ will provide the centripetal force . So
Tcosθ = mw²R
Tsinθ component will balance the weight .
Tsinθ = mg
Dividing the two equation
Tanθ = 
Hence for a given w , θ depends upon g or weight .
Explanation:
First we will convert the given mass from lb to kg as follows.
157 lb = 
= 71.215 kg
Now, mass of caffeine required for a person of that mass at the LD50 is as follows.

= 12818.7 mg
Convert the % of (w/w) into % (w/v) as follows.
0.65% (w/w) = 
= 
= 
Therefore, calculate the volume which contains the amount of caffeine as follows.
12818.7 mg = 12.8187 g = 
= 1972 ml
Thus, we can conclude that 1972 ml of the drink would be required to reach an LD50 of 180 mg/kg body mass if the person weighed 157 lb.
Answer:
110.87 dB
Explanation:
(I got it right on Acellus)
I= P/4(pi)r^2 = 60/4(pi)6.25^2
60/4(pi)6.25^2=0.12223
B=10log(I/Io)
B=10log(0.12223/1*10^-12) = 110.87 dB
111 in sigfigs