That two ways are known as:
1) Series connection
2) Parallel connection
Hi there!
We must begin by converting km/h to m/s using dimensional analysis:

Now, we can use the kinematic equation below to find the required acceleration:
vf² = vi² + 2ad
We can assume the object starts from rest, so:
vf² = 2ad
(17.22)²/(2 · 75) = a
a = 1.978 m/s²
Now, we can begin looking at forces.
For an object moving down a ramp experiencing friction and an applied force, we have the forces:
Fκ = μMgcosθ = Force due to kinetic friction
Mgsinθ = Force due to gravity
A = Applied Force
We can write out the summation. Let down the incline be positive.
ΣF = A + Mgsinθ - μMgcosθ
Or:
ma = A + Mgsinθ - μMgcosθ
We can plug in the given values:
22(1.978) = A + 22(9.8sin(5)) - 0.10(22 · 9.8cos(5))
A = 46.203 N
Answer:
They are formed on or near the Earth’s surface from the compression of ocean sediments or other processes.
Explanation:
Answer:
Mix
Explanation:
A battery has two electrodes, at one end it has the anode and the other end has the cathode. Electrons travel through the circuit from the anode (negative) to the cathode (positive), and this is the driving force that provides electricity to flow through circuits.
The anode needs to have a low electron affinity because it needs to readily release electrons, and the cathode needs to have a high electron affinity because it needs to readily accept electrons.
I think this might be the answer let me know 0.2 g/cm^3