Skip it but most probably the second one
Answer:
The work done by the hoop is equal to 5.529 Joules.
Explanation:
Given that,
Mass of the hoop, m = 96 kg
The speed of the center of mass, v = 0.24 m/s
To find,
The work done by the hoop.
Solution,
The initial energy of the hoop is given by the sum of linear kinetic energy and the rotational kinetic energy. So,

I is the moment of inertia, 
Since, 


Finally it stops, so the final energy of the hoop will be, 
The work done by the hoop is equal to the change in kinetic energy as :

W = -5.529 Joules
So, the work done by the hoop is equal to 5.529 Joules. Therefore, this is the required solution.
The Electric current is 1.11* 10^{-4}A
Given that the coil's radius is 3.55 cm (0.35 m),
The formula for the coil's area is A = r2 A = (3.14) (0.35)2 = 0.005024 m2.
R = Resistance = 600 N = Number of spins = 500 B = Magnetic field = (0.0120)
t + (3 x 10⁻⁵) t⁴
The number t = 5 is substituted for taking the derivative at both the induced current and the electric current.
The Electric current is therefore 1.11* 10^{-4}A
Electric current - The rate of electron passage in a conductor is known as electric current. The ampere is the electric current's SI unit. Electrons are little particles that are part of a substance's molecular structure. These electrons can be held loosely or securely depending on the situation.
To learn more about electric current please visit -brainly.com/question/12791045
#SPJ1
This would be the definition of a resistor. These components inhibit or “resist” the flow of a current.
Hope this helps!
Answer:
The water does not remove the peanut butter because the peanut butter is thicker substance than the water is, therefore it would not remove immediately.. It could also be because the brown dye or color in the peanut butter color or the peanut butter itself has already gone through her clothing Dana would have to remove it as much as she could with a towel water and some soap then throw it to the washer afterward.
Hope this helps, good luck:)