Answer: It is a molecular compound. (2) It contains a metal. (3) It can conduct electricity as a solid.
Answer:
138.96kJ is the maximum electrical work
Explanation:
The maximum electrical work that can be obtained from a cell is obtained from the equation:
W = -nFE
<em>Where W is work in Joules,</em>
<em>n are moles of electrons = 2mol e- because half-reaction of Zn is:</em>
Zn(s) → Zn²⁺(aq) + 2e⁻
F is faraday constant = 96500Coulombs/mol
E is cell potential = 0.72V
Replacing:
W = -2mol*96500Coulombs/mol*0.72V
W = - 138960J =
<h3>138.96kJ is the maximum electrical work</h3>
<em />
Answer:
1.18×10²³ atoms.
Explanation:
From Avogadro's hypothesis, we understood that 1 mole of any substance contains 6.02×10²³ atoms.
From the above concept, 1 mole of sodium also contains 6.02×10²³ atoms.
1 mole of sodium = 23 g.
Thus,
23 g of sodium contains 6.02×10²³ atoms.
Therefore, 4.5 g of sodium will contain = (4.5 × 6.02×10²³)/23 = 1.18×10²³ atoms.
From the above calculation,
4.5 g of sodium contains 1.18×10²³ atoms.
Here’s the math for your answer, which is 3.3 L HCl
Answer:
If something is in a solid state of matter, it has a definite shape and volume. The volume of an object is the amount of space it occupies. A block of wood placed on a table retains its shape and volume, therefore, it is an example of a solid. If a liquid is poured on that same table, there are very different results
Explanation: