Answer:
2.1 × 10⁻¹ M
2.0 × 10⁻¹ m
Explanation:
Molarity
The molar mass of aniline (solute) is 93.13 g/mol. The moles corresponding to 3.9 g are:
3.9 g × (1 mol/93.13 g) = 0.042 mol
The volume of the solution is 200 mL (0.200 L). The molarity of aniline is:
M = 0.042 mol/0.200 L = 0.21 M = 2.1 × 10⁻¹ M
Molality
The moles of solute are 0.042 mol.
The density of the solvent is 1.05 g/mL. The mass corresponding to 200 mL is:
200 mL × 1.05 g/mL = 210 g = 0.210 kg
The molality of aniline is:
m = 0.042 mol/0.210 kg = 0.20 m = 2.0 × 10⁻¹ m
Answer: An atom with 6 protons, 5 electrons, and 7 neutrons
Explanation: In this case, neutrons do not matter as they have a charge of 0, or no charge. A proton has a charge of +1 and an electron has a charge of -1. Since there are 6 protons, the total charge of the protons would be +6. Since there are 5 electrons the total charge of the electrons would be -5. +6 - 5 would result in a charge of +1. This means that this atom would have an overall charge of + 1. Basically, if there is one more proton than electron, then the overall charge of the atom will be +1 but if there is one more electron than proton, then the overall charge of the atom will be -1.
An exponential decay law has the general form: A = Ao * e ^ (-kt) =>
A/Ao = e^(-kt)
Half-life time => A/Ao = 1/2, and t = 4.5 min
=> 1/2 = e^(-k*4.5) => ln(2) = 4.5k => k = ln(2) / 4.5 ≈ 0.154
Now replace the value of k, Ao = 28g and t = 7 min to find how many grams of Thalium-207 will remain:
A = Ao e ^ (-kt) = 28 g * e ^( -0.154 * 7) = 9.5 g
Answer 9.5 g.