Answer:
CeO₂
Explanation:
Hello!
In this case, since we are given the mass of both cerium and the cerium oxide, we can first compute the moles of cerium and the moles of oxygen as shown below:


Now, we simply divide each moles by 0.03 as the fewest moles in the formula to obtain the simplest formula (empirical formula) of this oxide:

Thus, the formula turns out:

Regards!
There would be an equal amounts of ELECTRONS.
In order for the atom to be neutral it would imply that the number of protons (positive particles) and the number of electrons (negative particles) are equal since the neutrons are without charge.
Answer: Option (4) is the correct answer.
Explanation:
It is known that equilibrium constant is represented as follows for any general reaction.

K = ![\frac{[C][D]}{[A][B]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BC%5D%5BD%5D%7D%7B%5BA%5D%5BB%5D%7D)
As equilibrium constant is directly proportional to the concentration of products so more is the value of equilibrium constant more will be the number of products formed.
As a result, more is the time taken by the reaction to reach towards equilibrium. Whereas smaller is the value of equilibrium constant more rapidly it will reach towards the equilibrium.
Thus, we can conclude that cases where K is a very small number will require the LEAST time to arrive at equilibrium.
Answer:
The result of the atomic theory was atomic theory proposed that all matter was composed of atoms, also postulated that chemical reactions resulted in the rearrangement of the reacting atoms.
The season that is starting is winter.
The answer to 21 is (4)