Answer:
Magnesium bromide
Explanation:
its just the answer give brianliest
The excretory system<span> is responsible for removing the </span>cellular waste through the lungs,skin,and kidneys<span>. </span>
The molecular formula of HgCl (m = 5 472.1 g/mol) is Hg2Cl4.
The molecular formula is an expression that defines the number of atoms of each element in one molecule of a compound. It shows the actual number of each atom in a molecule.
<h3>Molecular formula: What is it?</h3>
A chemical formula is a way to communicate information in chemistry about the proportions of atoms that make up a specific chemical compound or molecule. Chemical element symbols, numbers, and occasionally other symbols like parentheses, dashes, brackets, commas, and plus and minus signs are used to represent the chemical elements.
A molecule's molecular formula reveals which atoms and how many of each kind are included within it. No subscript is used if there is just one atom of a certain kind. A subscript is added to the symbol for an atom if it contains two or more of a certain type of atom.
To learn more about molecular formula visit:
brainly.com/question/14425592
#SPJ4
Answer: a. The concentrations of the reactants and products have reached constant values
Explanation:
The reactions which do not go on completion and in which the reactant forms product and the products goes back to the reactants simultaneously are known as equilibrium reactions. For a chemical equilibrium reaction, equilibrium state is achieved when the rate of forward reaction becomes equal to rate of the backward reaction.
Equilibrium state is the state when reactants and products are present but the concentrations does not change with time and are constant.
Equilibrium constant is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios. It is expressed as 
K is the constant of a certain reaction when it is in equilibrium, while Q is the quotient of activities of products and reactants at any stage other than equilibrium of a reaction.
For a equilibrium reaction,

![K_{eq}=\frac{[B]}{[A]}](https://tex.z-dn.net/?f=K_%7Beq%7D%3D%5Cfrac%7B%5BB%5D%7D%7B%5BA%5D%7D)
Thus the correct answer is the concentrations of the reactants and products have reached constant values.