Answer:
1. The automobile is traveling due east and is speeding up.
2. The car is traveling due east and is is slowing down.
3. The automobile is traveling due east at a constant speed.
4. The car is traveling due west and is slowing down.
5. The automobile is traveling due west and is speeding up.
6. The automobile is traveling due west at a constant speed.
7. The automobile is accelerating due east from rest.
8. The automobile is accelerating due west from rest.
Explanation:
The key to understanding this is:
When the acceleration and initial velocity of the automobile have the same sign (positive or negative) then the automobile is speeding up. Explained further, if acceleration and the initial velocity are both positive or they are both negative the automobile is speeding up but whenever they have opposite signs (that is acceleration is positive and initial velocity is negative or vice versa) the automobile is slowing down. When the acceleration is zero the automobile is maintaining a unform motion at a constant speed (the speed is not changing with time). The + or - sign indicates the direction of travel. In this case east is + and west is -. It is my pleasure answering this question. I hope you find it helpful. Thank you.
Answer:
![\boxed{ \bold{ \huge{ \boxed{ \sf{see \: below}}}}}](https://tex.z-dn.net/?f=%20%5Cboxed%7B%20%5Cbold%7B%20%5Chuge%7B%20%5Cboxed%7B%20%5Csf%7Bsee%20%5C%3A%20below%7D%7D%7D%7D%7D)
Explanation:
![\underline{ \bold{ \sf{To \: prove \: that \: kinetic \: energy = \frac{1}{2} m {v}^{2} }}}](https://tex.z-dn.net/?f=%20%5Cunderline%7B%20%5Cbold%7B%20%5Csf%7BTo%20%5C%3A%20prove%20%5C%3A%20that%20%5C%3A%20kinetic%20%5C%3A%20energy%20%3D%20%20%5Cfrac%7B1%7D%7B2%7D%20m%20%7Bv%7D%5E%7B2%7D%20%7D%7D%7D)
Let us consider, a body of mass ' m ' is lying at rest ( initial velocity = 0 ) on a smooth surface. Let a constant force F displaces this body in its own direction by a displacement ' d '. Let 'v' be it's final velocity. The work done ' W ' by the force is given by :
![\sf{W = FD}](https://tex.z-dn.net/?f=%20%5Csf%7BW%20%3D%20FD%7D)
⇒![\sf{W = m \: \times a \: \times s} \: \: \: \: \: \: \: \: \: ( \: ∴ \: f \: = \: ma \: ; \: s \: = d)](https://tex.z-dn.net/?f=%20%5Csf%7BW%20%3D%20m%20%5C%3A%20%20%5Ctimes%20a%20%5C%3A%20%20%5Ctimes%20s%7D%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%28%20%5C%3A%20%E2%88%B4%20%5C%3A%20f%20%5C%3A%20%20%3D%20%20%5C%3A%20ma%20%5C%3A%20%3B%20%5C%3A%20s%20%5C%3A%20%20%3D%20d%29)
⇒![\sf{W = m \: \times \frac{v - u}{t} \times \frac{u + v}{2} \times t \: \: \: \: \: \: \: \: \: (∴ \: a = \frac{v - u}{t} and \: s = \frac{u + v}{2} \times t}](https://tex.z-dn.net/?f=%20%5Csf%7BW%20%3D%20m%20%5C%3A%20%20%5Ctimes%20%20%5Cfrac%7Bv%20-%20u%7D%7Bt%7D%20%20%5Ctimes%20%20%5Cfrac%7Bu%20%2B%20v%7D%7B2%7D%20%20%5Ctimes%20t%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%28%E2%88%B4%20%5C%3A%20a%20%3D%20%20%20%5Cfrac%7Bv%20-%20u%7D%7Bt%7D%20and%20%5C%3A%20s%20%3D%20%20%5Cfrac%7Bu%20%2B%20v%7D%7B2%7D%20%20%5Ctimes%20t%7D)
⇒![\sf{W = m \times \frac{ {v}^{2} - {u}^{2} }{2} }](https://tex.z-dn.net/?f=%20%5Csf%7BW%20%3D%20m%20%5Ctimes%20%20%5Cfrac%7B%20%7Bv%7D%5E%7B2%7D%20%20-%20%20%7Bu%7D%5E%7B2%7D%20%7D%7B2%7D%20%7D)
⇒![\sf{W = \frac{1}{2} m {v}^{2} \: \: \: \: \: \: \: \: \: \: \: \: (since, \: initial \: velocity(u) = 0)}](https://tex.z-dn.net/?f=%20%5Csf%7BW%20%3D%20%20%5Cfrac%7B1%7D%7B2%7D%20m%20%7Bv%7D%5E%7B2%7D%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%28since%2C%20%5C%3A%20initial%20%5C%3A%20velocity%28u%29%20%3D%200%29%7D)
The work done becomes the kinetic energy of the body. Thus, the kinetic energy of a body of mass ' m : moving with the velocity equal to 'v ' is 1 / 2 mv²
∴ ![\sf{KE= \frac{1}{2} m {v}^{2} }](https://tex.z-dn.net/?f=%20%5Csf%7BKE%3D%20%20%5Cfrac%7B1%7D%7B2%7D%20m%20%7Bv%7D%5E%7B2%7D%20%7D)
![\sf{ \underline{ \bold{ {proved}}}}](https://tex.z-dn.net/?f=%20%5Csf%7B%20%5Cunderline%7B%20%5Cbold%7B%20%20%7Bproved%7D%7D%7D%7D)
Hope I helped!
Best regards!!
Answer:
Kelvin to Celsius: C = K - 273 (C = K - 273.15 if you want to
Answer:
![\displaystyle 1 \frac{gr}{cm^3}=1,000\frac{kg}{m^3}](https://tex.z-dn.net/?f=%5Cdisplaystyle%201%20%5Cfrac%7Bgr%7D%7Bcm%5E3%7D%3D1%2C000%5Cfrac%7Bkg%7D%7Bm%5E3%7D)
Explanation:
Note: We are assuming the unit 'm' is 'm^3' to be compatible with the given unit.
<u>Unit Conversions
</u>
Is the procedure followed to change the units of a certain magnitude to other units of the same magnitude. Example: centimeters to meters, hours to minutes, Kg to gr.
When dealing with composite units, each unit must be converted separately.
The density of some liquid is
![\displaystyle 1 \frac{gr}{cm^3}](https://tex.z-dn.net/?f=%5Cdisplaystyle%201%20%5Cfrac%7Bgr%7D%7Bcm%5E3%7D)
We are required to convert to
, so we convert separately
We know that
![\displaystyle 1 gr=\frac{1}{1000}Kg](https://tex.z-dn.net/?f=%5Cdisplaystyle%201%20gr%3D%5Cfrac%7B1%7D%7B1000%7DKg)
![\displaystyle 1 cm^3=\frac{1}{1,000,000}m^3](https://tex.z-dn.net/?f=%5Cdisplaystyle%201%20cm%5E3%3D%5Cfrac%7B1%7D%7B1%2C000%2C000%7Dm%5E3)
The conversion is
![\displaystyle 1 \frac{gr}{cm^3}=\frac{\frac{1}{1000}Kg}{\frac{1}{1,000,000}m^3}](https://tex.z-dn.net/?f=%5Cdisplaystyle%201%20%5Cfrac%7Bgr%7D%7Bcm%5E3%7D%3D%5Cfrac%7B%5Cfrac%7B1%7D%7B1000%7DKg%7D%7B%5Cfrac%7B1%7D%7B1%2C000%2C000%7Dm%5E3%7D)
![\displaystyle 1 \frac{gr}{cm^3}=\frac{1,000,000\ kg}{1000\ m^3}=1,000\frac{kg}{m^3}](https://tex.z-dn.net/?f=%5Cdisplaystyle%201%20%5Cfrac%7Bgr%7D%7Bcm%5E3%7D%3D%5Cfrac%7B1%2C000%2C000%5C%20kg%7D%7B1000%5C%20m%5E3%7D%3D1%2C000%5Cfrac%7Bkg%7D%7Bm%5E3%7D)
Thus
![\boxed{\displaystyle 1 \frac{gr}{cm^3}=1,000\frac{kg}{m^3}}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cdisplaystyle%201%20%5Cfrac%7Bgr%7D%7Bcm%5E3%7D%3D1%2C000%5Cfrac%7Bkg%7D%7Bm%5E3%7D%7D)
Answer:
<em>according to the conservation of mass,</em>
<em>according to the conservation of mass,the mass of the water is 36.04g</em><em>r</em><em>a</em><em>m</em><em>s</em><em> </em>
Explanation:
Hope It Help you