At t =0, the velocity of A is greater than the velocity of B.
We are told in the question that the spacecrafts fly parallel to each other and that for the both spacecrafts, the velocities are described as follows;
A: vA (t) = ť^2 – 5t + 20
B: vB (t) = t^2+ 3t + 10
Given that t = 0 in both cases;
vA (0) = 0^2 – 5(0) + 20
vA = 20 m/s
For vB
vB (0) = 0^2+ 3(0) + 10
vB = 10 m/s
We can see that at t =0, the velocity of A is greater than the velocity of B.
Learn more: brainly.com/question/24857760
Read each question carefully. Show all your work for each part of the question. The parts within the question may not have equal weight. Spacecrafts A and B are flying parallel to each other through space and are next to each other at time t= 0. For the interval 0 <t< 6 s, spacecraft A's velocity v A and spacecraft B's velocity vB as functions of t are given by the equations va (t) = ť^2 – 5t + 20 and VB (t) = t^2+ 3t + 10, respectively, where both velocities are in units of meters per second. At t = 6 s, the spacecrafts both turn off their engines and travel at a constant speed. (a) At t = 0, is the speed of spacecraft A greater than, less than, or equal to the speed of spacecraft B?
satellite originally moves in a circular orbit of radius R around the Earth. Suppose it is moved into a circular orbit of radius 4R.
(i) What does the force exerted on the satellite then become?
eight times larger<span>four times larger </span>one-half as largeone-eighth as largeone-sixteenth as large(ii) What happens to the satellite's speed?<span>eight times larger<span>four times larger </span>one-half as largeone-eighth as largeone-sixteenth as large(iii) What happens to its period?<span>eight times larger<span>four times larger </span>one-half as largeone-eighth as largeone-sixteenth as large</span></span>
<span>
</span>
Explanation:
It is given that,
Area of nickel wire, 
Resistance of the wire, R = 2.4 ohms
Initial value of magnetic field, 
Final magnetic field, 
Time, t = 1.12 s
Let I is the induced current in the loop of wire over this time. Te emf induced in the wire is given by Faraday's law as :






Induced current in the loop of wire is given by :



So, the induced current in the loop of wire over this time is
. Hence, this is the required solution.
A) Geothermal
B) Hydroelectric
C)Biomass
D) Wind
I assume this is the four options you had, correct?
i think that biomass is the only one that would release the greenhouse gases. I once heard, it may not be true, that biomass has more co2 released than coal.
Answer:
2×10^-4m^3/0.002m^3
Explanation:
first know the formula of getting density which is
density=mass/volume
substitute with values given in the problem
{before beginning convert all the values to SI units}
13600m/cm^3=2.27kg/x
calculate to solve for x=volume