Answer:
the atmosphere supports life by giving us simple things like wood.
Answer:
Lowering the object near the ground decreases its <u>potential energy.</u>
<u></u>
Explanation:
Potential Energy : Energy possessed by the object due to its shape ,Size and Position is called potential energy.
Example :
Change in shape and size : When you compress the spring , potential energy is introduced in it . So it expand quickly when you remove your hand.
Change in position : when you swing , after attaining maximum height (extreme ends) , the swing comes back on its on .This is because at maximum height ,the swing has<u> maximum Potential energy . </u>Hence it fall back on its on because it already has potential energy.
Potential energy(P) is given by the formula :
P = mgh
where ,
m= mass of the object
g = acceleration due to gravity
h = height of the object from the ground
If the height of the object increases from the ground , its potential energy also get increase.
<u><em>On lowering the object The height of the object from the ground reduces . So potential energy also reduces.</em></u>
The circulatory system works with the digestive system. Once the food is digested, the circulatory systems absorb and uses the nutrients in the food. If the digestive system were to break down, the circulatory will not have the nutrients it needs to sufficiently run the body.
Answer: 19.4 g/cm3
Explanation: density is the relationship between mass over volume.
So density of gold is 15.7g/0.81cm3 = 19.4 g/cm3
A is obviously out because it leads to a volume of 125.0 milliliters of the new solution and gives you a lower concentration than you were aiming for.
D is out because you are adding 75 milliliters of the stock solution, so your concentration would be too high. You only need 25.0 milometers of stock solution per 100 milliliters of the new solution.
C is also out because it leads to 50.0 milliliters stock solution per 100 milliliters of the new solution and hence the wrong concentration.
B is by default the correct answer. It also details the correct technique. First you add the stock solution (This you know from your calculations to be 25 milliliters.) then you add the water up to the volume you needed. (Because the calculations only tell you the total volume of water not what you need to add) You also add the water last so you can rinse the neck of the flask to make sure you also get all the stock solution residue into the stock solution.
I would add the final step of stirring, but B is the only answer that can be correct.