Answer:
ramp b requires less force than ramp a
Explanation:
Answer:
27 m/s
Explanation:
Given:
v₀ = 15 m/s
a = 3 m/s²
t = 4 s
Find: v
v = at + v₀
v = (3 m/s²) (4 s) + (15 m/s)
v = 27 m/s
Answer:
μ = 0.375
Explanation:
F = Applied force on the trash can = 75 N
W = weight of the trash can = 200 N
f = frictional force acting on trash can
Since the trash can moves at constant speed, force equation for the motion of can is given as
F - f = 0
75 - f = 0
f = 75 N
μ = Coefficient of friction
frictional force is given as
f = μ W
75 = μ (200)
μ = 0.375
Generally, the internal resistance of the new battery is small, about 0.2 euros, while the old battery is large, close to 1 euro ,
To solve this problem we will apply the concept related to destructive interference (from the principle of superposition). This concept is understood as a superposition of two or more waves of identical or similar frequency that, when interfering, create a new wave pattern of less intensity (amplitude) at a point called a node. Mathematically it can be described as

Where,
d = Path difference
= wavelength
n = Any integer which represent the number of repetition of the spectrum
In this question the distance between the two source will be minimum for the case of minimum path difference, then n= 1



Therefore the minimum distance that should you separate two sources emitting the same waves is 2.5mm