There
are five layers of the atmosphere and these are; troposphere, stratosphere,
mesosphere, thermosphere and exosphere. The first layer, troposphere, is where
we are able to do most of our activities. This is where we can see the formation
of clouds, the production of rain, hail, snow and other weather phenomenon.
Also, this layer is where the greatest amount of air pressure because most of
the molecules of air are in this area. Like us, air has also mass and the
pressure is brought down by the earth’s gravity causing an increase in weight
exerted on you as you descend lower into the atmosphere. So, as you enter into
the other layers of atmosphere above the troposphere, the air pressure starts
to decrease. <span>Below the atmosphere
is the hydrosphere. This is where all liquid forms are located. And since the
seawater has a greater mass than air, it has the greatest pressure. </span>
The final velocity of the block A will be 2.5 m/sec. The principal of the momentum conversation is used in the given problem.
<h3>What is the law of conservation of momentum?</h3>
According to the law of conservation of momentum, the momentum of the body before the collision is always equal to the momentum of the body after the collision.
In a given concern, mass m₁ is M, mass m₂ is 3M. Initial speed for the mass m₁ and m₂ will be u₁=5 and u₂=0 m/s respectively,
According to the law of conservation of momentum
Momentum before collision =Momentum after collision
m₁u₁+m₂u₂=(m₁+m₂)v
M×5+3M×0=[M+3M]v
The final velocity is found as;
V=51.25 m/s
The velocity of block A is found as;

Hence, the final velocity of the block A will be 2.5 m/sec.
To learn more about the law of conservation of momentum, refer;
brainly.com/question/1113396
#SPJ4
Answer:
When force and displacement are in the same direction, the work performed on an object is said to be positive work. Example: When a body moves on the horizontal surface, force and displacement act in the forward path. The work is done in this case known as Positive work.
Explanation:
Hope this helps you
K.E. increases by 9 times
Explanation:
The kinetic energy of a car is given by:

where
m is the mass of the car
v is its speed
From this definition, we see that the kinetic energy depends on the square of the velocity. Assuming that both cars have same mass, m, the kinetic energy of the first car is:

while the kinetic energy of the second car is

if we calculate the ratio, we get

The answer is option C) The car experienced negative acceleration with velocity in the positive direction.