Answer: The first answer for the first problem, and the 2nd answer for the second problem
Explanation: For the first one, if it is absolute zero, the molecules would not move at all.
For the second one, the temperature of the sample will increase due to the movement.
Answer:
1.52 nm
Explanation:
Using the De Broglie wavelength equation,
λ = h/p where λ = wavelength associated with electron, h = Planck's constant = 6.63 × 10⁻³⁴ Js and p = momentum of electron = mv where m = mass of electron = 9.1 × 10⁻³¹ kg and v = velocity of electron = 4.8 × 10⁵ m/s
So, λ = h/p
λ = h/mv
substituting the values of the variables into the equation, we have
λ = h/mv
λ = 6.63 × 10⁻³⁴ Js/(9.1 × 10⁻³¹ kg × 4.8 × 10⁵ m/s)
λ = 6.63 × 10⁻³⁴ Js/(43.68 × 10⁻²⁶ kgm/s)
λ = 0.1518 × 10⁻⁸ m
λ = 1.518 × 10⁻⁹ m
λ = 1.518 nm
λ ≅ 1.52 nm
Explanation:
The equation of motion of an object is given by :

Where
t is the time in seconds
We need to find the time when the object hits the ground. When the object hits the ground, h(t) = 0
So,


On solving above equation using online calculator, t = 8 seconds. So, the object hit the ground after 8 seconds. Hence, this is the required solution.
Answer:
Frequency
Explanation:
The frequency ( ) of a wave is the number of waves passing a point in a certain time.