Answer:
Explanation:
The question relates to motion on a circular path .
Let the radius of the circular path be R .
The centripetal force for circular motion is provided by frictional force
frictional force is equal to μmg , where μ is coefficient of friction and mg is weight
Equating cenrtipetal force and frictionl force in the case of car A
mv² / R = μmg
R = v² /μg
= 26.8 x 26.8 / .335 x 9.8
= 218.77 m
In case of moton of car B
mv² / R = μmg
v² = μRg
= .683 x 218.77x 9.8
= 1464.35
v = 38.26 m /s .
Answer:
D
Explanation:
The gravity is pushing the water downward so Wayne could go down but the water is pushing Wayne to go up which would make him float.
Your weight on the moon given the data from the question is 110.5 N
<h3>Definition of mass and weight </h3>
Mass is simply defined as the quantity of matter present in an object. The mass of an object is constant irrespective of the location of the object.
Weight is simply defined as the gravitational pull on an object. The weight of an object varies from place to place due to gravity.
<h3>Relationship between mass and weight </h3>
Mass and weight are related according to the following equation
Weight (W) = mass (m) × Acceleration due to gravity (g)
<h3>How to determine the weight on the moon</h3>
- Mass (m) = 65 Kg
- Acceleration due to gravity on the moon (g) = 1.7 m/s²
- Weight (W) =?
W = mg
W = 65 × 1.7
W = 110.5 N
Learn more about mass and weight:
brainly.com/question/14684564
#SPJ1
Amplitude: the height of the wave<span>, measured in meters
</span><span>Wavelength: the distance between adjacent crests, measured in meters
</span>
Answer: 161.3
I have a acellus too and got this question correct, so I hope this helps y’all out