Answer:
The force applied is 32 N
Explanation:
F = ma
F = 8 × 4
F = 32 N
Answer:
A.model the reflection of a light wave
The Wave Model of Light Toolkit provides teachers with standards-based resources for designing lesson plans and units that pertain to such topics as the light's wavelike behaviors, wave-particle duality, light-wave interference, and light polarization
B. .model the absorption of a light wave
The simplest model is the Drude/Lorentz model, where the light wave makes charged particle oscillate while the particle is also being damped by a force of friction (damping force)
A mirror provides the foremost common model for reflective light wave reflection and generally consists of a glass sheet with a gold coating wherever the many reflections happen. Reflection is increased in metals by suppression of wave propagation on the far side their skin depths
C.model the transmimssion of a light wave
The Wave Model describes how light propagates in the same way as we model ocean waves moving through the water. By thinking of light as an oscillating wave, we can account for properties of light such as its wavelength and frequency. By including wavelength information, the Wave Model can be used to explain colors.
Explanation:
<u>Latent hea</u>t is related to changes in phase between liquids ,gases and solids.
<u>Sensible heat</u> is related to changes in temperature of a gas or object with no change in phase.
Answer:
Scientists plan to release a space probe that will enter the atmosphere of a gaseous planet. The temperature of the gaseous planet increases linearly with the height of the atmosphere as measured from the top of a visible boundary layer, defined as 0 kilometers in altitude. The instruments on board can withstand a temperature of 601 K. At what altitude will the probe's instruments fail? A. 50 kilometers B. 80 kilometers C. 83 kilometers D. 100 kilometers E. 111 kilometers
Explanation:
A. 50 kilometers
It is as a result of gravity. (D)
This is as stated by Newton's law of universal gravitation. That two objects in the universe attract one another with a force that is proportional to the product of their masses and inversely proportional to the square of the distance apart.
The constant of proportionality is the Universal Gravitational Constant.
G = 6.673 × 10⁻¹¹ Nm²kg⁻²