Answer:

Explanation:
From the question we are told that
Radius of vertical r= 8m
Force exerted by passengers is 1/4 of weight
Generally the net force acting on top of the roller coaster is give to be

where


Generally the net force is given to be 




Mathematical we can now derive V




Therefore the speed of the roller coaster is given ton be 
8.64
×10^4
this is 86400 in scientific notation
The momentum of the second ball was 15 kg.m/s.
<h3>What is inelastic collision?</h3>
In which collision some amount of kinetic energy of the system is lost that called inelastic collision. In purely inelastic collision, two bodies stick together. But principle of conservation of linear momentum is obeyed.
In the given question,
Two balls collide and after collision, the final momentum of the system = 18 kg.m/s.
Initial velocity of 1st ball of mass 3 kg is 1 m/s.
So, Initial momentum of first ball = mass × velocity = (3 kg) × (1 m/s) = 3 kg.m/s.
According to Principle of conservation of linear momentum for this inelastic collision,
Initial momentum of first ball + initial momentum of second ball = final momentum of the system
⇒ initial momentum of second ball = final momentum of the system - Initial momentum of first ball
= 18 kg.m/s - 3 kg.m/s.
= 15 kg.m/s.
Hence, initial momentum of second ball = 15 kg.m/s.
Learn more about momentum here:
brainly.com/question/24030570
#SPJ2
T=s/v=>t=1500/1,5=1000s
1,5km=1500m
Answer:
1.2 x 10¹¹ kgm²/s
Explanation:
m = mass of the airplane = 39043.01
r = altitude of the airplane = 9.2 km = 9.2 x 1000 m = 9200 m
v = speed of airplane = 335 m/s
L = Angular momentum of airplane
Angular momentum of airplane is given as
L = m v r
Inserting the values
L = (39043.01 ) (335) (9200)
L = (39043.01 ) (3082000)
L = 1.2 x 10¹¹ kgm²/s