Answer:
609547.12 Pa ≈ 6.10×10^5 Pa
Explanation:
Step 1:
Data obtained from the question. This include the following:
Force (F) = 49.8 N
Radius (r) = 0.00510 m
Pressure (P) =..?
Step 2:
Determination of the area of the head of the nail.
The head of a nail is circular in nature. Therefore, the area is given by:
Area (A) = πr²
With the above formula we can obtain the area as follow:
Radius (r) = 0.00510 m
Area (A) =?
A = πr²
A = π x (0.00510)²
A = 8.17×10^-5 m²
Therefore the area of the head of the nail is 8.17×10^-5 m²
Step 3:
Determination of the pressure exerted by the hammer.
This is illustrated below:
Force (F) = 49.8 N
Area (A) = 8.17×10^-5 m²
Pressure (P) =..?
Pressure (P) = Force (F) /Area (A)
P = F/A
P = 49.8/8.17×10^-5
P = 609547.12 N/m²
Now, we shall convert 609547.12 N/m² to Pa.
1 N/m² = 1 Pa
Therefore, 609547.12 N/m² = 609547.12 Pa.
Therefore, the pressure exerted by the hammer on the nail is 609547.12 Pa or 6.10×10^5 Pa
Answer:
This is because the force of gravity is much less on the moon than on the earth, therefore the person wont be pulled down much and will jump higher
Answer and Explanation:
Parallax method is used for finding the distance of objects in space there are two types of parallax method that is stellar parallax and trigonometric parallax.The disadvantage of using parallax method is that it can can not reach so far in the Galaxy due to this reason parallax method is generally not used for measuring distance in galaxy.
Answer:
The possible range of wavelengths in air produced by the instrument is 7.62 m and 0.914 m respectively.
Explanation:
Given that,
The notes produced by a tuba range in frequency from approximately 45 Hz to 375 Hz.
The speed of sound in air is 343 m/s.
To find,
The wavelength range for the corresponding frequency.
Solution,
The speed of sound is given by the following relation as :

Wavelength for f = 45 Hz is,


Wavelength for f = 375 Hz is,


So, the possible range of wavelengths in air produced by the instrument is 7.62 m and 0.914 m respectively.
We have the meats Arby’s we beat them kids