Answer:
The average power is 18 W
Explanation:
Solution:-
If the current and voltage of an electrical device (in the passive reference configuration) are:
v(t) = 6 sin(100πt) V
i(t) = 6 sin(100πt) + 9 cos(100πt) Amp
- First we will find the harmonic form of the current function i(t):
a sin ( wt ) + b cos ( wt ) ≡ R*sin ( wt + α )
Where,
R = √( a^2 + b^2 )
α = arctan ( b / a )
- Transforming the function i (t) into the harmonic form:
a = 6 , b = 9
R = √( a^2 + b^2 ) = √( 6^2 + 9^2 ) = √( 36 + 81 )
R = √117
α = arctan ( b / a ) = arctan ( 9 / 6 )
α = 0.98279 rads
Hence,
i(t) = 6 sin(100πt) + 9 cos(100πt) ≡ √117*sin (100πt + 0.98279 )
- The average power is given by the following formula:

Where,
Vm: The mean voltage
Im : The mean current
β : The phase difference
- Using the given functions we have:
Vm = 6 V , Im = R = √117 Amps , β = 0.98279

Answer: The average power is 18 W.