<h3>
Answer:</h3>

<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Physics</u>
<u>Energy</u>
Elastic Potential Energy: 
- U is energy (in J)
- k is spring constant (in N/m)
- Δx is displacement from equilibrium (in m)
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
k = 7.50 N/m
Δx = 0.40 m
<u>Step 2: Find Potential Energy</u>
- Substitute in variables [Elastic Potential Energy]:

- Evaluate exponents:

- Multiply:

- Multiply:

Answer:
A. Refer to the figure.
B. The net force acting on the crate is

C. We should first find the acceleration of the crate using the following kinematics equation:

Mass of the crate can be found by Newton’s Second Law:
Answer:
t = 6.63 s
Explanation:
Given that,
Initial velocity of the puck, u = 7.3 m/s
Deacceleration of the puck, a = -1.1 m/s²
Distance traveled, d = 5 m
We need to find the time the goalie have to stop the puck. Using equation of motion.
v = u +at
v = 0 (stops)
So,

So, the required time is 6.63 seconds.
Glaciers<span> begin to </span>form<span> when snow remains in the same area year-round, where enough snow accumulates to transform into ice. Each year, new layers of snow bury and compress the previous layers. This compression forces the snow to re-crystallize, forming grains similar in size and shape to grains of sugar.</span>
Answer:
force (tension) of 29.4 N (upward) in 100 cm
force (tension) of 58.4 N (upward) in 200 cm
Explanation:
Given:
Length of tube = 5 m (500 cm)
Mass of tube = 9
Suspended vertically from 150 cm and 50 cm.
Computation:
Force = Mass × gravity acceleration.
Force = 9.8 x 9
Force = 88.2 N
So,
Upward forces = Downward forces
D1 = 150 - 50 = 100 cm
D2 = 150 + 50 = 200 cm
And F1 = F2
F1 x D1 = F2 x D2
F1 x 100 = F2 x 200
F = 2F
Total force = Upward forces + Downward forces
3F = 88.2
F = 29.4 and 2F = 58.8 N
force (tension) of 29.4 N (upward) in 100 cm
force (tension) of 58.4 N (upward) in 200 cm