Answer:

Explanation:
The force of friction between the quails feet and the ground is:







So the coefficient of static is solve



f' = frequency observed by the police car after sound reflected from the vehicle and comes back to police car = 1250 Hz
f = frequency emitted by the police car = 1200 Hz
V = speed of sound = 340 m/s
v = speed of vehicle = ?
frequency observed by the police car is given as
f' = f (V + v)/(V - v)
inserting the values in the above equation
1250 = 1200 (340 + v)/(340 - v)
v = 6.9 m/s
Answer:
a. 
b. 
c. 
Explanation:
First, look at the picture to understand the problem before to solve it.
a. d1 = 1.1 mm
Here, the point is located inside the cilinder, just between the wire and the inner layer of the conductor. Therefore, we only consider the wire's current to calculate the magnetic field as follows:
To solve the equations we have to convert all units to those of the international system. (mm→m)

μ0 is the constant of proportionality
μ0=4πX10^-7 N*s2/c^2
b. d2=3.6 mm
Here, the point is located in the surface of the cilinder. Therefore, we have to consider the current density of the conductor to calculate the magnetic field as follows:
J: current density
c: outer radius
b: inner radius
The cilinder's current is negative, as it goes on opposite direction than the wire's current.




c. d3=7.4 mm
Here, the point is located out of the cilinder. Therefore, we have to consider both, the conductor's current and the wire's current as follows:

As we see, the magnitud of the magnetic field is greater inside the conductor, because of the density of current and the material's nature.
Hello!
We can use the kinematic equation:

a = acceleration (m/s²)
vf = final velocity (45 m/s)
vi = initial velocity (25 m/s)
t = time (5 sec)
Plug in the givens:

Nitrogen: 1s2, 2s2, 2p3 is correct answer.