Answer:
The force of friction acting on block B is approximately 26.7N. Note: this result does not match any value from your multiple choice list. Please see comment at the end of this answer.
Explanation:
The acting force F=75N pushes block A into acceleration to the left. Through a kinetic friction force, block B also accelerates to the left, however, the maximum of the friction force (which is unknown) makes block B accelerate by 0.5 m/s^2 slower than the block A, hence appearing it to accelerate with 0.5 m/s^2 to the right relative to the block A.
To solve this problem, start with setting up the net force equations for both block A and B:

where forces acting to the left are positive and those acting to the right are negative. The friction force F_fr in the first equation is due to A acting on B and in the second equation due to B acting on A. They are opposite in direction but have the same magnitude (Newton's third law). We also know that B accelerates 0.5 slower than A:

Now we can solve the system of 3 equations for a_A, a_B and finally for F_fr:

The force of friction acting on block B is approximately 26.7N.
This answer has been verified by multiple people and is correct for the provided values in your question. I recommend double-checking the text of your question for any typos and letting us know in the comments section.
Answer:
Energy=3.1times 10^-17 J
Rest mass: 6.2 kg
Speed: 47.5 m/s
Wavelength: 2.659 times 10^-6
Momentum: 67.3 kg(m/s)
Explanation:
Answer:
The acceleration of the object is
Explanation:
Given:
Initial velocity of object
= 200 feet/second
Final velocity of object
= 50 feet/second
Time of travel = 5 seconds
To calculate acceleration of the object we will find the rate of change of velocity with respect to time.
So, acceleration
is given by:

where
represents final velocity,
represents initial velocity and
is time of travel.
Plugging in values to evaluate acceleration.



The acceleration of the object is
(Answer). The negative sign shows the object is slowing down.
The evidence that the universe is expanding comes with something called the red shift<span> of light. Light travels to Earth from other galaxies. As the light from that galaxy gets closer to Earth, the distance between Earth and the galaxy increases, which causes the wavelength of that light to get longer.</span>
Answer: 3.63 km/s
Explanation:
The escape velocity equation for a craft launched from the Earth surface is:
Where:
is the escape velocity
is the Universal Gravitational constant
is the mass of the Earth
is the Earth's radius
However, in this situation the craft would be launched at a height
over the Eart's surface with a space elevator. Hence, we have to add this height to the equation:
Finally: