Answer:
you draw the line first to the light bulb and then you connect it to the battery then you connect it to microscope
Explanation:
hope this helped pls mark it brainlest pls and thank you:)
They are alike because they have the same numbers in a different order. One is reversing the numbers of the original set. They are different because one number is larger in value while the other is lesser in value compared to each other.
My answer to the question above is not the best example but I hope it will help you. <span>The Arrhenius model says that acids always contain H+ and that bases always contain OH-. </span>
<span>The Bronsted-Lowry model thinks of acids as being proton donors and proton acceptors, so bases no longer need to contain OH-, and acids donate a proton to water forming H3O+. </span>
<span>Lewis acids are electron pair acceptors, and Lewis bases are electron pair donors. For instance, H+ + OH- => H20. H+ has no electrons, so when it bonds to the Oxygen, it gains an electron pair. OH- "loses" an electron pair.</span>
Answer:
The boiling point elevation is 3.53 °C
Explanation:
∆Tb = Kb × m
∆Tb is the boiling point elevation of the solution
Kb is the molal boiling point elevation constant of CCl4 = 5.03 °C/m
m is the molality of the solution is given by moles of solute (C9H8O) divided by mass of solvent (CCl4) in kilogram
Moles of solute = mass/MW =
mass = 92.7 mg = 92.7/1000 = 0.0927 g
MW = 132 g/mol
Moles of solute = 0.0927/132 = 7.02×10^-4 mol
Mass of solvent = 1 g = 1/1000 = 0.001 kg
m = 7.02×10^-4 mol ÷ 0.001 kg = 0.702 mol/kg
∆Tb = 5.03 × 0.702 = 3.53 °C (to 2 decimal places)
Answer:
Rate of forward reaction will increase.
Explanation:
Effect of change in reaction condition on equilibrium is explained by Le Chatelier's principle. According to this principle,
If an equilibrium condition of a dynamic reversible reaction is disturbed by changing concentration, temperature, pressure, volume, etc, then reaction will move will in a direction which counteract the change.
In the given reaction,
A + B ⇌ C + D
If concentration of A is increase, then reaction will move in a direction which decreases the concentration of A to reestablish the equilibrium.
As concentration A decreases in forward direction, therefore, rate of forward reaction will increase.