To solve this problem it is necessary to apply the kinematic equations of motion.
By definition we know that the position of a body is given by

Where
Initial position
Initial velocity
a = Acceleration
t= time
And the velocity can be expressed as,

Where,

For our case we have that there is neither initial position nor initial velocity, then

With our values we have
, rearranging to find a,



Therefore the final velocity would be



Therefore the final velocity is 81.14m/s
Answer:
I'm going to say b. gasoline is a chemical and when it combusts, it causes heat (thermal energy) and when the piston rotates because of the thermal expansion, you get mechanical force.
Magnetism is <span>a physical phenomenon produced by the motion of electric charge, resulting in attractive and repulsive forces between objects.</span>
Answer:
reverberation time appropriate to the use and size of the room, adequate balance between direct and reverberant sound, intimacy and good sound diffusion in the room to obtain a uniform sound.
Explanation:The process of ... second method measured the speed of sound propagation by the phase shift.
Answer:
<em>The force of friction acting on the block has a magnitude of 15 N and acts opposite to the applied force.</em>
Explanation:
<u>Net Force
</u>
The Second Newton's law states that an object acquires acceleration when an unbalanced net force is applied to it.
The acceleration is proportional to the net force and inversely proportional to the mass of the object.
If the object has zero net force, it won't get accelerated and its velocity will remain constant.
The m=2 kg block is being pulled across a horizontal surface by a force of F=15 N and we are told the block moves at a constant velocity. This means the acceleration is zero and therefore the net force is also zero.
Since there is an external force applied to the box, it must have been balanced by the force of friction, thus the force of friction has the same magnitude acting opposite to the applied force.
The force of friction acting on the block has a magnitude of 15 N opposite to the applied force.