Answer:
c. 
Explanation:
= Initial distance between asteroid and rock = 7514 km = 7514000 m
= Final distance between asteroid and rock = 2823 km = 2823000 m
= Initial speed of rock = 136 ms⁻¹
= Final speed of rock = 392 ms⁻¹
= mass of the rock
= mass of the asteroid
Using conservation of energy
Initial Kinetic energy of rock + Initial gravitational potential energy = Final Kinetic energy of rock + Final gravitational potential energy

less mass is more mass but less energy in more mass. less mass has more energy
To solve this problem it is necessary to use the concepts related to the Hall Effect and Drift velocity, that is, at the speed that an electron reaches due to a magnetic field.
The drift velocity is given by the equation:

Where
I = current
n = Number of free electrons
A = Cross-Section Area
q = charge of proton
Our values are given by,






The hall voltage is given by

Where
B= Magnetic field
n = number of free electrons
d = distance
e = charge of electron
Then using the formula and replacing,


Answer:
5 m
Explanation:
From the question,
v = λf....................... Equation 1
Where v = speed of the sound wave, λ = wavelength of the sound wave, f = frequency of the sound wave.
make λ the subject of the equation
λ = v/f..................... Equation 2
Given: v = 150 cm/s = 1.5 m/s, f = 0.3 hz.
Substitute these values into equation 2
λ = 1.5/0.3
λ = 5 m.