1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
inessss [21]
2 years ago
14

If the same type of thermoplastic polymer is being tensile tested and the strain rate is increased, it will: g

Engineering
1 answer:
Serggg [28]2 years ago
3 0

Answer:

It would break I think need to try it out

Explanation:

You might be interested in
A sheet of steel 3-mm thick has nitrogen atomospheres on both sides at 900 C and is permitted to achieve a steady-state di usion
kati45 [8]

Answer:

X_B = 1.8 \times 10^{-3} m = 1.8 mm

Explanation:

Given data:

Diffusion constant for nitrogen is = 1.85\times 10^{-10} m^2/s

Diffusion flux = 1.0\times 10^{-7} kg/m^2-s

concentration of nitrogen at high presuure = 2 kg/m^3

location on which nitrogen  concentration is 0.5 kg/m^3   ......?

from fick's first law

J = D \frac{C_A C_B}{X_A X_B}

Take C_A as point  on which nitrogen concentration is 2 kg/m^3

x_B = X_A + D\frac{C_A -C_B}{J}

Assume X_A is zero at the surface

X_B = 0 + ( 12\times 10^{-11} ) \frac{2-0.5}{1\times 10^{-7}}

X_B = 1.8 \times 10^{-3} m = 1.8 mm

4 0
3 years ago
Explain how use of EGR is effective in reducing NOx emissions 4. In most locations throughout the U.S., the octane number of reg
TiliK225 [7]

Answer:please see attached file

Explanation:

3 0
3 years ago
Four kilograms of carbon monoxide (CO) is contained in a rigid tank with a volume of 1 m3. The tank is fitted with a paddle whee
Juli2301 [7.4K]

Answer:

a) 1 m^3/Kg  

b) 504 kJ

c) 514 kJ

Explanation:

<u>Given  </u>

-The mass of C_o2 = 1 kg  

-The volume of the tank V_tank = 1 m^3  

-The added energy E = 14 W  

-The time of adding energy t = 10 s  

-The increase in specific internal energy Δu = +10 kJ/kg  

-The change in kinetic energy ΔKE = 0 and The change in potential energy  

ΔPE =0  

<u>Required  </u>

(a)Specific volume at the final state v_2

(b)The energy transferred by the work W in kJ.  

(c)The energy transferred by the heat transfer W in kJ and the direction of  

the heat transfer.  

Assumption  

-Quasi-equilibrium process.  

<u>Solution</u>  

(a) The volume and the mass doesn't change then, the specific volume is constant.

 v= V_tank/m ---> 1/1= 1 m^3/Kg  

(b) The added work is defined by.  

W =E * t --->  14 x 10 x 3600 x 10^-3 = 504 kJ  

(c) From the first law of thermodynamics.  

Q - W = m * Δu

Q = (m * Δu) + W--> (1 x 10) + 504 = 514 kJ

The heat have (+) sign the n it is added to the system.

7 0
3 years ago
Assuming the transition to turbulence for flow over a flat plate happens at a Reynolds number of 5x105, determine the following
torisob [31]

Given:

Assuming the transition to turbulence for flow over a flat plate happens at a Reynolds number of 5x105, determine the following for air at 300 K and engine oil at 380 K. Assume the free stream velocity is 3 m/s.

To Find:

a. The distance from the leading edge at which the transition will occur.

b. Expressions for the momentum and thermal boundary layer thicknesses as a function of x for a laminar boundary layer

c. Which fluid has a higher heat transfer

Calculation:

The transition from the lamina to turbulent begins when the critical Reynolds

number reaches 5\times 10^5

(a).  \;\text{Rex}_{cr}=5 \times 10^5\\\\\frac{\rho\;vx}{\mu}=5 \times 10^5\\\text{density of of air at}\;300K=1.16  \frac{kg}{m\cdot s}\\\text{viscosity of of air at}\;300K=1.846 \times 10^{-5} \frac{kg}{m\cdot s} \\v=3m/s\\\Rightarrow x=\frac{5\times 10^5 \times 1.846 \times 10^{-5} }{1.16 \times 3} =2.652 \;m \;\text{for air}\\(\text{similarly for engine oil at 380 K for given}\; \rho \;\text{and} \;\mu)\\

(b).\; \text{For the lamina boundary layer momentum boundary layer thickness is given by}:\\\frac{\delta}{x} =\frac{5}{\sqrt{R_e}}\;\;\;\;\quad\text{for}\; R_e(c). \frac{\delta}{\delta_t}={P_r}^{\frac{r}{3}}\\\text{For air} \;P_r \;\text{equivalent 1 hence both momentum and heat dissipate with the same rate for oil}\; \\P_r >>1 \text{heat diffuse very slowly}\\\text{So heat transfer rate will be high for air.}\\\text{Convective heat transfer coefficient will be high for engine oil.}

7 0
3 years ago
What skills are key to reading comprehension?
ki77a [65]

Ability to recognize words and understand vocabulary

Answer: Option 2.

<u>Explanation:</u>

Reading comprehension is the capacity to process content, comprehend its significance, and to incorporate with what the peruser definitely knows. Capacity to grasp content is affected by perusers' aptitudes and their capacity to process data.

For the students reading comprehension problems frequently include troubles in perceiving and suitably applying foundation information, poor disentangling and word acknowledgment abilities, restricted jargon information, immature understanding familiarity, a not exactly key way to deal with cognizance.

5 0
3 years ago
Other questions:
  • In electric heaters, electrical energy is converted to potential energy. a)-True b)-false?
    11·1 answer
  • 6. Staples are the most common item used to secure and support cables in residential wiring.​
    14·1 answer
  • Is a 68.75 and a 70 a pass in 5th grade?
    10·2 answers
  • The hot water needs of an office are met by heating tab water by a heat pump from 16 C to 50 C at an average rate of 0.2 kg/min.
    5·1 answer
  • Please answer the following questions.
    9·2 answers
  • A vacuum gage connected to a tank reads 30 kPa at a location where the barometric reading is 755 mmHg. Determine the absolute pr
    14·1 answer
  • An open vat in a food processing plant contains 500 L of water at 20°C and atmospheric pressure. If the water is heated to 80°C,
    9·1 answer
  • How does warming up the tires on a car increase grip with the pavement?
    12·1 answer
  • A student is building a circuit which material should she use for the wires and why?
    10·2 answers
  • In a movie theater in winter, 510 people, each generation sensible heat at a rate of 80 W, are watching a movie. The heat losses
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!