Answer:
a) I = 3.63 W / m²
, b) I = 0.750 W / m²
Explanation:
The intensity of a sound wave is given by the relation
I = P / A = ½ ρ v (2π f )²
I = (½ ρ v 4π² s_{max}²) f²
a) with the initial condition let's call the intensity Io
cte = (½ ρ v 4π² s_{max}²)
I₀ = cte s² f₀²
I₀ = cte 10 6
If frequency is increase f = 2.20 10³ Hz
I = constant (2.20 10³) 2
I = cte 4.84 10⁶
let's find the relationship of the two quantities
I / Io = 4.84
I = 4.84 Io
I = 4.84 0.750
I = 3.63 W / m²
b) in this case the frequency is reduced to f = 0.250 10³ Hz and the displacement s = 4 s or
I = cte (f s)²
I = constant (0.250 10³ 4)²
I = cte 1 10⁶
the relationship
I / Io = 1
I = Io
I = 0.750 W / m²
Answer:
A bicycle on the top of the hill has the highest potential energy, and when the bike goes down, it transfers to kinetic because it is moving
Explanation:
yeah
Answer:
The datapoint 9.0 ppm is outlier at the 90% confidence level.
Explanation:
The old data has following values
mean=10.5 mm
standard deviation 0.2 mm
Now the mean of new values is calculated as following
So the value as 9.0 ppm can be considered easily as outlier in this regard.
Answer:
B
Explanation:
They are all one-dimensional
(a) The required magnitude of the electric field when the point charge is an electron is 5.57 x 10⁻¹¹ N/C.
(b) The required magnitude of the electric field when the point charge is an proton is 1.02 x 10⁻⁷ N/C.
<h3>
Magnitude of electric field </h3>
The magnitude of electric field is given by the following equation.
F = qE
But F = mg
mg = qE
E = mg/q
where;
- E is the electric field
- m is mass of the particle
- g is acceleration due to gravity
- q is charge of the particle
<h3>For an electron</h3>
E = (9.11 x 10⁻³¹ x 9.8)/(1.602 x 10⁻¹⁹)
E = 5.57 x 10⁻¹¹ N/C
<h3>For proton</h3>
E = (1.67 x 10⁻²⁷ x 9.8)/(1.602 x 10⁻¹⁹)
E = 1.02 x 10⁻⁷ N/C
Thus, the required vertical electric field is greater when the charge is proton.
Learn more about electric field here: brainly.com/question/14372859
#SPJ1