Answer:
Explanation:
The given time is 1 / 4 of the time period
So Time period of oscillation.
= 4 x .4 =1.6 s
When the block reaches back its original position when it came in contact with the spring for the first time , the block and the spring will have maximum
velocity. After that spring starts unstretching , reducing its speed , so block loses contact as its velocity is not reduced .
So required velocity is the maximum velocity of the block while remaining in contact with the spring.
v ( max ) = w A = 1.32 m /s.
<span>If the Earth rotated more slowly about its axis, your apparent weight would
A) increase.
B) decrease.
C) stay the same.
D) be zero.
</span>A) increase.
The ball will decelerate as it moves upwards.
The magnitude of the ball's acceleration is 0.3 m/s² and it directed backwards.
The given parameters;
- initial velocity of the ball, u = 1.25 m/s
- time of motion of the ball, t = 4.22 s
As the ball rolls up the inclined plane, the velocity decreases and eventually becomes zero when the ball reaches the highest point of the plane.
Thus, the ball decelerate as it moves upwards.
The acceleration of the ball is calculate as;

<em>at the highest point on the incline plane, the final velocity </em>
<em> is zero</em>

Thus, the magnitude of the ball's acceleration is 0.3 m/s² and it directed backwards.
Learn more here:brainly.com/question/23860763
C. amphibian eggs do not contain a protective shell