We cannot answer the question if we do not have the answers - sorry!!
Answer:
G. It will take twice as long.
Explanation:
Let's call
the original speed of the plane and
the distance between Dallas and Pensacola. The time the plane originally takes to complete the flight is

In this problem, we are told that the plane encounters wind moving at half of its speed:
, in the opposite direction. This means that the new speed of the plane is

And so, the time the plane takes now to complete the flight is

So, the plane takes twice the time as before.
(1) You must find the point of equilibrium between the two forces,
<span>G * <span><span><span>MT</span><span>ms / </span></span><span>(R−x)^2 </span></span>= G * <span><span><span>ML</span><span>ms / </span></span><span>x^2
MT / (R-x)^2 = ML / x^2
So,
x = R * sqrt(ML * MT) - ML / (MT - ML)
R = is the distance between Earth and Moon.
</span></span></span>The result should be,
x = 3.83 * 10^7m
from the center of the Moon, and
R - x = 3.46*10^8 m
from the center of the Earth.
(2) As the distance from the center of the Earth is the number we found before,
d = R - x = 3.46*10^8m
The acceleration at this point is
g = G * MT / d^2
g = 3.33*10^-3 m/s^2
Answer:
The wavelength of the light is 555 nm.
Explanation:
according to Bragg's law..
n×λ = d×sin(θ)
n is the fringe number
λ is the wavelength of the light
d is the slit separation
θ is the angle the light makes with the normal at the fringe.
Hrdudikdodidbshshsjjsksks