Answer:
Rectangular path
Solution:
As per the question:
Length, a = 4 km
Height, h = 2 km
In order to minimize the cost let us denote the side of the square bottom be 'a'
Thus the area of the bottom of the square, A = 
Let the height of the bin be 'h'
Therefore the total area, 
The cost is:
C = 2sh
Volume of the box, V =
(1)
Total cost,
(2)
From eqn (1):

Using the above value in eqn (1):


Differentiating the above eqn w.r.t 'a':

For the required solution equating the above eqn to zero:


a = 4
Also

The path in order to minimize the cost must be a rectangle.
The moon is talking to thecat at night that’s why
C is the answer to the question
The book is lifted upward, but gravity points down, so the work done by gravity must be negative (so you can eliminate options 1 and 3).
The force exerted on the book by gravity has magnitude
<em>F</em> = <em>mg</em> = (10 N) (9.80 m/s^2) = 9.8 N ≈ 10 N
You raise the book 1.0 m in the opposite direction, so the work done is
<em>W</em> = (10 N) (-1.0 m) = -10 J