1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
astra-53 [7]
3 years ago
5

Calculate the Latent Heat of Vaporization. (Please see picture attached)

Physics
1 answer:
Hunter-Best [27]3 years ago
7 0

Answer:

20 J/g

Explanation:

In this question, we are required to determine the latent heat of vaporization

  • To answer the question, we need to ask ourselves the questions:

What is latent heat of vaporization?

  • It is the amount of heat required to change a substance from its liquid state to gaseous state without change in temperature.
  • It is the amount of heat absorbed by a substance as it boils.

How do we calculate the latent heat of vaporization?

  • Latent heat is calculated by dividing the amount of heat absorbed by the mass of the substance.

In this case;

  • Mass of the substance = 20 g
  • Heat absorbed as the substance boils is 400 J (1000 J - 600 J)

Thus,

Latent heat of vaporization = Quantity of Heat ÷ Mass

                                             = 400 Joules ÷ 20 g

                                             = 20 J/g

Thus, the latent heat of vaporization is 20 J/g

You might be interested in
Two blocks are connected by a light string that passes over two frictionless pulleys. The block of mass m2 is attached to a spri
irina1246 [14]

(BELOW YOU CAN FIND ATTACHED THE IMAGE OF THE SITUATION)

Answer:

d=\frac{2g(m1-m2)}{k}

Explanation:

For this we're going to use conservation of mechanical energy because there are nor dissipative forces as friction. So, the change on mechanical energy (E) should be zero, that means:

E_{i}=E_{f}

K_{i}+U_{i}=K_{f}+U_{f} (1)

With K_{i} the initial kinetic energy, U_{i} the initial potential energy, K_{f} the final kinetic energy and U_{f} the final potential energy. Note that initialy the masses are at rest so K_{i} = 0, when they are released the block 2 moves downward because m2>m1 and finally when the mass 2 reaches its maximum displacement the blocks will be instantly at rest so K_{f} =0. So, equation (1) becomes:

U_{i}=U_{f} (2)

At initial moment all the potential energy is gravitational because the spring is not stretched so U_{i}=U_{gi} and at final moment we have potential gravitational energy and potential elastic energy so U_{f}=U_{gf}+U_{ef}, using this on (2)

U_{gi}=U_{gf}+U_{ef} (3)

Additional if we define the cero of potential gravitational energy as sketched on the figure below (See image attached), U_{gi}=0 and we have by (3) :

0= U_{gf}+U_{ef} (4)

Now when the block 1 moves a distance d upward the block 2 moves downward a distance d too (to maintain a constant length of the rope) and the spring stretches a distance d, so (4) is:

0=-m1gd+m2gd+\frac{kd^{2}}{2}

dividing both sides by d

0=-m1g+m2g+\frac{kd}{2}

g(m1-m2)= \frac{kd}{2}

d=\frac{2g(m1-m2)}{k}, with k the constant of the spring and g the gravitational acceleration.

7 0
3 years ago
A projectile is shot from the edge of a cliff above the ground level with initial velocity of at an angle with the horizontal. (
Xelga [282]

Answer:

t = √2y/g

Explanation:

This is a projectile launch exercise

a) The vertical velocity in the initial instants (v_{oy} = 0) zero, so let's use the equation

     y =v_{oy} t -1/2 g t²

     y= - ½ g t²

     t = √2y/g

b) Let's use this time and the horizontal displacement equation, because the constant horizontal velocity

     x = vox t

     x = v₀ₓ √2y/g

c) Speeds before touching the ground

     vₓ = vox = constant

     v_{y} = v_{oy} - gt

     v_{y} = 0 - g √2y/g

    v_{y}  = - √2gy

    tan θ = Vy / vx

    θ = tan⁻¹ (vy / vx)

    θ = tan⁻¹ (√2gy / vox)

d) The projectile is higher than the cliff because it is a horizontal launch

6 0
3 years ago
you are piloting a small plane and you want to reach an airport 450 km due south in 3.0 h a wind is blowing from the west 50.0 k
alex41 [277]

Answer:

You should choose airspeed 158.11 km/h at 18.4° west of south

Explanation:

The distance to the air port is 450 km due to south

You should to reach the airport in 3 hours

→ Velocity = distance ÷ time

→ Distance = 450 km , time = 3 hours

→ The velocity of your plane = 450 ÷ 3 = 150 km/h due to south

A wind is blowing from west 50 km/h

We need to know what heading and airspeed you should choose to

reach your destination

At first we must find the resultant velocity of your plane and the wind

The south and west are perpendicular, then the resultant velocity is

→ v_{R}=\sqrt{(v_{p})^{2}+(v_{w})^{2}}

→ v_{p}=150 km/h ,  v_{w}=50 km/h

→ v_{R}=\sqrt{(150)^{2}+(50)^{2}}=158.11 km/h

To cancel the velocity of the wind, the pilot should maintain the velocity

of the plane at 158.11 km/h

The direction of the velocity is the angle between the resultant velocity

and the vertical (south)

→ The direction of the velocity is tan^{-1}\frac{50}{150}=18.4°

The direction of the velocity is 18.4° west of south

<em>You should choose airspeed 158.11 km/h at 18.4° west of south</em>

8 0
3 years ago
The ball is moving at a constant speed of 0.5 m/s for 2.3 seconds how far does it go?
yarga [219]

Distance = (speed) x (time)

Distance = (0.5 m/s) x (2.3 s)

Distance = (0.5 x 2.3) m

Distance = 1.15 meters

7 0
3 years ago
Explain how columns can be used and set up to increase the effectiveness of business documents.
Usimov [2.4K]
You can put the name of the product and the price and add another column and add all of your expenses<span />
3 0
3 years ago
Other questions:
  • If one replaces the conducting cube with one that has positive charge carriers, in what direction does the induced electric fiel
    14·1 answer
  • A hot spot is an area where material from deep within the mantle rises and melts through the crust above it. True or false need
    9·2 answers
  • For every action there is an equal and opposite reaction. What does this phrase mean in Physics?
    15·1 answer
  • What is the effective resistance of this dc circuit
    5·1 answer
  • A skier weighing 86.2 kg starts from rest and slides down a 32.0-m frictionless slope that is inclined at an angle of 15.0° with
    14·1 answer
  • If a green ball has a greater momentum than an orange ball and both balls are moving at the same velocity, then _________.
    13·2 answers
  • Pollex is the medical term for which of these parts of the human body?
    11·1 answer
  • Questlon 7 of 10
    9·2 answers
  • Question 81 point)
    9·1 answer
  • There are many muscles in our body. our body uses muscles to move parts of our body. a part that needs to move a lot will have a
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!