1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
astra-53 [7]
4 years ago
5

Calculate the Latent Heat of Vaporization. (Please see picture attached)

Physics
1 answer:
Hunter-Best [27]4 years ago
7 0

Answer:

20 J/g

Explanation:

In this question, we are required to determine the latent heat of vaporization

  • To answer the question, we need to ask ourselves the questions:

What is latent heat of vaporization?

  • It is the amount of heat required to change a substance from its liquid state to gaseous state without change in temperature.
  • It is the amount of heat absorbed by a substance as it boils.

How do we calculate the latent heat of vaporization?

  • Latent heat is calculated by dividing the amount of heat absorbed by the mass of the substance.

In this case;

  • Mass of the substance = 20 g
  • Heat absorbed as the substance boils is 400 J (1000 J - 600 J)

Thus,

Latent heat of vaporization = Quantity of Heat ÷ Mass

                                             = 400 Joules ÷ 20 g

                                             = 20 J/g

Thus, the latent heat of vaporization is 20 J/g

You might be interested in
A cruise ship travels across a river at 25 meters per minute. If the river is 6200 meters wide, how long
EleoNora [17]

Answer:

248 minutes

Explanation:

6200/25=248

This means there is 248 25s in 6200

which means it will take 248 minutes to travel through the river

Also here's a neat trick:

The units for speed is meters/minute

The units for distance is meters

Dividing distance by speed will cancel out the meters and leave only the speed.

3 0
3 years ago
Sally travels by car from one city to another. She drives for 26.0 min at 83.0 km/h, 52.0 min at 41.0 km/h, and 45.0 min at 60.0
Anna007 [38]
The average speed is determined by the following formula:

average speed = [sum of (speed * time for which that speed was traveled)] / total time

average speed = [(83 * 26 + 41 * 52 + 60 * 45 + 0 * 15) / 60] / [(26 + 52 + 45 + 15) / 60]
*note: The division by 60 is to convert minutes to hours. We see that the 60 cancels from the top and bottom of the division

average speed = 50.65 km/hr

The total distance traveled is equivalent to the numerator of the fraction we used in the first part. This is:
Distance = (83 * 26 + 41 * 52 + 60 * 45 + 0 * 15) / 60

Distance = 116.5 kilometers
6 0
4 years ago
The current theory of the structure of the
Mariana [72]

Answers:

a) 2.82(10)^{21} kg

b) 1410 J

c) 36.62 m/s

Explanation:

<h3>a) Mass of the continent</h3>

Density \rho  is defined as a relation between mass m and volume V:

\rho=\frac{m}{V} (1)

Where:

\rho=2720 kg/m^{3} is the average density of the continent

m is the mass of the continent

V is the volume of the continent, which can be estimated is we assume it as a a slab of rock 5300 km on a side and 37 km deep:

V=(length)(width)(depth)=(5300 km)(5300 km)(37 km)=1,030,330,000 km^{3} \frac{(1000 m)^{3}}{1 km^{3}}=1.03933(10)^{18} m^{3}

Finding the mass:

m=\rho V (2)

m=(2720 kg/m^{3})(1.03933(10)^{18} m^{3}) (3)

m=2.82(10)^{21} kg (4) This is the mass of the continent

<h3>b) Kinetic energy of the continent</h3>

Kinetic energy K is given by the following equation:

K=\frac{1}{2}mv^{2} (5)

Where:

m=2.82(10)^{21} kg is the mass of the continent

v=4.8 \frac{cm}{year} \frac{1 m}{100 cm} \frac{1 year}{365 days} \frac{1 day}{24 hours} \frac{1 hour}{3600 s}=1(10)^{-9} m/s is the velocity of the continent

K=\frac{1}{2}(2.82(10)^{21} kg)(1(10)^{-9} m/s)^{2} (6)

K=1410 J (7) This is the kinetic energy of the continent

<h3>c) Speed of the jogger</h3>

If we have a jogger with mass m=77 kg and the same kinetic energy as that of the continent 1413 J, we can find its velocity by isolating v from (5):

v=\sqrt{\frac{2 K}{m}} (6)

v=\sqrt{\frac{2 (1413 J)}{77 kg}}

Finally:

v=36.62 m/s This is the speed of the jogger

5 0
4 years ago
Explain why liquids solidify when they are cooled.
Setler [38]
Because the molecules that move freely begin to compact closer together, with less heat, means less molecular activity. 
8 0
3 years ago
Read 2 more answers
If the result of your calculation of a quantity has si units kg•m^2/s^2•C, that quantity could be
Novosadov [1.4K]
It would be Joules.
Workdone is measured in Joules.
Workdone = Force * distance
Force = mass * acceleration
          = kg      *  ms⁻²
          = kgms⁻²

Distance = m

So, Force * distance
       kgms⁻² * m

Apply laws of indices that says
x² * x³ = x²⁺³ = x⁵

Therefore, It would be kgm²s⁻²
m¹ * m¹ = m¹⁺¹ = m²
s⁻² is also = s / 2





4 0
3 years ago
Read 2 more answers
Other questions:
  • What are ways to stop erosion? and what are are benefits and downfalls to that method?
    11·1 answer
  • My car engine can generate 3000 Newtons of force and the car masses 1500 kg. How fast can the sports car accelerate?​
    6·1 answer
  • jim(mass=100kg) rollerblades on a smooth horizontal floor at a constant speed of 2.0 m/s for a distance of 5m in 5 seconds. What
    11·1 answer
  • Why is it more comfortable to fall onto a big pillow than onto a wooden floor ?
    12·1 answer
  • How long does it take for mitosis to complete?
    11·1 answer
  • Suppose you wanted to hold up an electron against the force of gravity by the attraction of a fixed proton some distance above i
    6·1 answer
  • Which of these examples has the most kinetic energy?
    11·2 answers
  • Which is bigger, a kilometer or a mile?
    7·2 answers
  • 1 point
    8·1 answer
  • Identify the amplitude of the wave using the picture below.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!