Answer:
Explanation:
spring constant k = 425 N/m
a ) At the point of equilibrium
restoring force = frictional force
= kx = 10 N
425 x = 10
x = 2.35 cm
b )
Work done by frictional force
= -10 x 2.35 x 10⁻² x 2 J ( Distance is twice of 2.35 cm )
= - 0.47 J
= Kinetic energy remaining with the cookie as it slides back through the position where the spring is unstretched .
= 425 - 0.47
= 424.53 J
=
At the center, when the bob is hanging straight down
Answer:
Explanation:
Venus's atmosphere is very thick, dry and hot whereas Mars's atmosphere is very thin and cold.
Both Venus's and Mars's atmospheres are about 95 percent carbon dioxide.
The surface temperature of Venus is around 890 degrees F, the hottest average temperature in the Solar System. This is due to abundance of greenhouse gasses. The atmosphere of Venus is composed of 97% CO2, 2% N2 and less than 1% of O2, H2O and CH4 (methane). Since CO2 is a major greenhouse gas, the radiation from the Sun is trapped in the atmosphere of Venus producing an extremely high surface temperature.
Mars has an atmospheric composition of 95% CO2, 3% N2, 2% Ar and less than 1% O2.A high noble gas content implies that Mar's atmosphere was much thicker in the past (noble gases do not react with other elements and are heavy enough to stay within the gravitational field of Mars). The climate on Mars is very desert-like due to its thin atmosphere. There is too little mass in the atmosphere to hold in heat so the warmest daytime temperatures are around 50 degrees F, but the nighttime temperatures are -170 degrees F. Other weather features are massive dust storms and occasional CO2 fog in the canyons.
Answer:
Explanation:
Given that
F=ax^3/2. a is a constant
The force does a work of
W=2.01KJ from x=0 to x=15.2m
We need to find a
Work is give as,
W=∫F.ds
But this is in x direction only then,
W=∫Fdx. from x=0 to x=15.2m
W=∫ax^3/2dx from x=0 to x=15.2m
W=ax^(3/2+1)/(3/2+1).
W=ax^(5/2)/5/2
W=ax^(2/5)/2.5 from x=0 to x=15.2m
Cross multiply
2.5W=ax^2.5. from x=0 to x=15.2m
2.5W= a (15.2^2.5-0)
W=2.01KJ=2010J
2.5×2010=a×900.76
Therefore,
a=5.56
Answer:
U_eq = 1.99 * 10^(-10) J
Explanation:
Given:
Plate Area = 10 cm^2
d = 0.01 m
k_dielectric = 3
k_air = 1
V = 15 V
e_o = 8.85 * 10 ^-12 C^2 / N .m
Equations used:
U = 0.5 C*V^2 .... Eq 1
C = e_o * k*A /d .... Eq 2
U_i = 0.5 e_o * k_i*A_i*V^2 /d ... Eq 3
For plate to be half filled by di-electric and half filled by air A_1 = A_2 = 0.5 A:
U_electric = 0.5 e_o * k_1*A*V^2 /2*d
U_air = 0.5 e_o * k_2*A*V^2 /2*d
The total Energy is:
U_eq = U_electric + U_air
U_eq = 0.5 e_o * k_1*A*V^2 /2*d + 0.5 e_o * k_2*A*V^2 /2*d
U_eq = (k_1 + k_2) * e_o * A*V^2 / 4*d
Plug the given values:
U_eq = (3 + 1) * (8.82 * 10^ -12 )* (0.001)*15^2 / 4*0.01
U_eq = 1.99 * 10^(-10) J