Answer:
See the answers below.
Explanation:
We can solve both problems using Newton's second law, which tells us that the sum of forces on a body is equal to the product of mass by acceleration.
∑F =m*a
where:
F = force [N] (units of newtons)
m = mass = 1000 [kg]
a = acceleration = 3 [m/s²]
![F = 1000*3\\F=3000[N]](https://tex.z-dn.net/?f=F%20%3D%201000%2A3%5C%5CF%3D3000%5BN%5D)
And the weight of any body can be calculated by means of the mass product by gravitational acceleration.
![W=m*g\\W=1000*9.81\\W=9810 [N]](https://tex.z-dn.net/?f=W%3Dm%2Ag%5C%5CW%3D1000%2A9.81%5C%5CW%3D9810%20%5BN%5D)
Answer:
4
Explanation:
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
= Mass of Earth
= Mass of Moon
r = Distance between Earth and Moon
Old gravitational force

New gravitational force

Dividing the equations

The ratio is 
The new force would be 4 times the old force
Answer:
v = 29.4m/s
Explanation:
Since the ball is dropped at rest,
u = 0m/s
a = 9.81m/s²
Using
v = u + at
After 3 seconds,
v = 0 + (9.81)(3)
v = 29.4m/s
Answer:
a.Distance = 150 m
b. Displacement = 50 m
Time lapsed = 5 seconds
Explanation:
a. Distance is the change in the position of an object.
The distance covered by the car = 100 + 50
= 150 m
b. Since displacement is a vector quantity,
Displacement of the car = 100 - 50
= 50 m due east
c. Time elapsed is the time taken for the motion of the car starting from when its starts to when it stops.
Thus, the time elapsed = 4 + 1
= 5 seconds