Answer:
average speed is 0.159 m/s
average velocity = 0.0011 m/s
Explanation:
given data
time = 41.6 s
total distance = 6.65 m
length = 0.0463 m
to find out
average speed and the magnitude average velocity
solution
we know average speed formula is
average speed =
...............1
put here value
average speed = 
average speed is 0.159 m/s
and
average velocity formula is
average velocity =
...............2
here displacement is initial point to final point and here is 0.0463 m
put here value
average velocity = 
average velocity = 0.0011 m/s
The best answer would be C.
The mass of an element depends on the number of particles found in the nucleus of the atom. Atomic mass can be computed by adding the number of protons and the number of neutrons. Protons and neutrons are found in the nucleus of an atom. So the answer must be letter C.
Answer:
9R
Explanation:
We know that the resistance is
.
If we stretch the wire to a new length L2 = 3L, the cross-sectional area will also change. If the cross-sectional area doesn't change throughout the wire, we can say that:
Volume = L*A = 3L * A2 being A2 the new area after stretching the wire.
Since the volume remains the same we conclude that A2 = A/3
With this information, we calculate the new resistance:

Since
, and by simple inspection of the previous equation, we get:
<em>R2 = 9*R</em>
Explanation:
Both graphs show plotted points forming a curved line. Curved lines have changing slope; they may start with a very small slope and begin curving sharply (either upwards or downwards) towards a large slope. In either case, the curved line of changing slope is a sign of accelerated motion (i.e., changing velocity).