An example of a hypothesis for an experiment might be: “A basketball will bounce higher if there is more air it”
Step one would be to make an observation... “hey, my b-ball doesn’t have much air in it, and it isn’t bouncing ver high”
Step two is to form your hypothesis: “A basketball will bounce higher if there is more air it”
Step three is to test your hypothesis: maybe you want to drop the ball from a certain height, deflate it by some amount and then drop it from that same height again, and record how high the ball bounced each time.
Here the independent variable is how much air is in the basketball (what you want to change) and the dependent variable is how high the b-ball will bounce (what will change as a result of the independent variable)
Step four is to record all of your results and step five is to analyze that data. Does your data support your hypothesis? Why or why not?
You should only test one variable at a time because it is easier to tell why the results are how they are; you only have one cause.
Hope this helps!
Answer:
The efficiency of Carnot's heat engine is 26.8 %.
Explanation:
Temperature of hot reservoir, TH = 100 degree C = 373 K
temperature of cold reservoir, Tc = 0 degree C = 273 K
The efficiency of Carnot's heat engine is
The efficiency of Carnot's heat engine is 26.8 %.
Answer:
T = 1.2 s
T = 15.1 m = 15 m
Explanation:
This is a case of projectile motion:
TOTAL TIME OF FLIGHT:
The formula for total time of flight in projectile motion is:
T = 2 V₀ Sinθ/g
where,
T = Total Time of Flight = ?
V₀ = Launch Speed = 13.9 m/s
θ = Launch Angle = 25°
g = 9.8 m/s²
Therefore,
T = (2)(13.9 m/s)(Sin 25°)/(9.8 m/s²)
<u>T = 1.2 s</u>
<u></u>
RANGE OF BALL:
The formula for range in projectile motion is:
R = V₀² Sin2θ/g
where,
R = Horizontal Distance Covered by ball = ?
Therefore,
T = (13.9 m/s)²(Sin 2*25°)/(9.8 m/s²)
<u>T = 15.1 m = 15 m</u>
The correct answer is A, electrons enter orbitals of lowest energy first. The Aufbau principle states that electrons orbiting atoms fill the lowest energy levels available before filling higher levels. Following this, molecules can go into the most stable electron configuration.
Answer:
200 W
Explanation:
The power is given by the ratio between the amount of work done and the time taken to perform the work:

where in this problem we have
W = 2600 J is the work done
t = 13 s is the time taken to do the work
Substituting the numbers into the equation, we find
