Answer: 53 kPa
Explanation:
Absolute pressure is a pressure value referred to absolute zero or vacuum. This value indicates the total pressure to which a body or system (the chamber in this situation) is subjected, considering the total pressure acting on it.
In this sense, the equation that will be useful in this case is:
(1)
Where:
is the atmospheric pressure
is the vacuum pressure
is the absolute pressure
Isolating
from (1):
(2)
(3)
Finally:
This is the absolute pressure in the chamber
Answer:
a = 40 [m/s²]
Explanation:
These kinds of problems can be solved using Newton's second law, which tells us that the sum of forces on a body is equal to the product of mass by acceleration.
∑F = m*a
where:
F = force = 6 [N]
m = mass = 0.15 [kg]
a = acceleration [m/s²]
![a=F/m\\a=6/0.15\\a=40[m/s^{2} ]](https://tex.z-dn.net/?f=a%3DF%2Fm%5C%5Ca%3D6%2F0.15%5C%5Ca%3D40%5Bm%2Fs%5E%7B2%7D%20%5D)
According to the saving of the momentum, the total momentum before collision is equal to the total momentum after collision
<em><u>in symbols:</u></em>
<em>
</em>
thus

then, the initial momentum of the second cart

Answer:
vf = 11.2 m/s
Explanation:
m = 10 Kg
F = 2*10² N
x = 4.00 m
μ = 0.44
vi = 0 m/s
vf = ?
We can apply Newton's 2nd Law
∑ Fx = m*a (→)
F - Ffriction = m*a ⇒ F - (μ*N) = F - (μ*m*g) = m*a ⇒ a = (F - μ*m*g)/m
⇒ a = (2*10² N - 0.44*10 Kg*9.81 m/s²)/10 Kg = 15.6836 m/s²
then , we use the equation
vf² = vi² + 2*a*x ⇒ vf = √(vi² + 2*a*x)
⇒ vf = √((0)² + 2*(15.6836 m/s²)*(4.00m)) = 11.2 m/s