The elastic potential energy of the spring is 0.31 J
Explanation:
The elastic potential energy of a spring is given by

where
k is the spring constant
x is the compression/stretching of the spring
For the spring in this problem, we have:
k = 500 N/m (spring constant)
x = 0.035 m (compression)
Substituting, we find the elastic potential energy:

Learn more about potential energy:
brainly.com/question/1198647
brainly.com/question/10770261
#LearnwithBrainly
The force of the racket affects the ball's motion because it changes the momentum of the ball.
<h3>Impulse received by the ball</h3>
The impulse received by the ball through the racket affects the motion because it changes the momentum of the ball.
The ball which is initially at rest, will gain momentum after been hit with the racket.
J = ΔP = Ft
where;
- J is the impulse received by the ball
- ΔP is change in momentum of the ball
- F is the applied force
- t is the time of action
Thus, the force of the racket affects the ball's motion because it changes the momentum of the ball.
Learn more about impulse here: brainly.com/question/25700778
Answer:
B. Maximum velocity of ejected electrons.
Explanation:
The ejection of electrons form a metal surface when the metal surface is exposed to a monochromatic electromagnetic wave of sufficiently short wavelength or higher frequency (or equivalently, above a threshold frequency), which leads to the enough energy of the wave to incident and get absorbed to the exposed surface emits electrons. This phenomenon is known as the photoelectric effect or photo-emission.
The minimum amount of energy required by a metal surface to eject an electron from its surface is called work function of metal surface.
The electrons thus emitted are called photo-electrons.
The current produced as a result is called photo electricity.
Energy of photon is given by:

where:
h = Planck's constant
frequency of the incident radiation.
To solve this problem we will apply the concept of magnification, which is given as the relationship between the focal length of the eyepieces and the focal length of the objective. This relationship can be expressed mathematically as,

Here,
= Magnification
= Focal length eyepieces
= Focal length of the Objective
Rearranging to find the focal length of the objective

Replacing with our values


Therefore the focal length of th eobjective lenses is 27.75cm
Answer:
See Explanation
Explanation:
The principle of conservation of energy states that; energy can neither be created nor destroyed but is converted from one form to another.
In view of this principle, Ella can not be correct when she says that a lot of energy has disappeared. The use of the term "disappeared" connotes the idea that the energy no longer exists which does not happen.
Hence, energy can not "disappear" from hot water rather the energy in the water may be transferred to the surroundings.