1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lisov135 [29]
3 years ago
6

HELP PLZ "25 meters per second Northeast" is a description of

Physics
2 answers:
Hoochie [10]3 years ago
7 0

Answer:

ion no

Explanation:

cuz i dont

lord [1]3 years ago
7 0

Answer:

It is the SPEED of an object.

Explanation:

You might be interested in
When a wave passes from one medium to another, its _________ remains constant.
Mashcka [7]
The frequency will not change
3 0
3 years ago
A 1 kg mass is attached to a spring with spring constant 7 Nt/m. What is the frequency of the simple harmonic motion? What is th
Scorpion4ik [409]

1. 0.42 Hz

The frequency of a simple harmonic motion for a spring is given by:

f=\frac{1}{2\pi}\sqrt{\frac{k}{m}}

where

k = 7 N/m is the spring constant

m = 1 kg is the mass attached to the spring

Substituting these numbers into the formula, we find

f=\frac{1}{2\pi}\sqrt{\frac{7 N/m}{1 kg}}=0.42 Hz

2. 2.38 s

The period of the harmonic motion is equal to the reciprocal of the frequency:

T=\frac{1}{f}

where f = 0.42 Hz is the frequency. Substituting into the formula, we find

T=\frac{1}{0.42 Hz}=2.38 s

3. 0.4 m

The amplitude in a simple harmonic motion corresponds to the maximum displacement of the mass-spring system. In this case, the mass is initially displaced by 0.4 m: this means that during its oscillation later, the displacement cannot be larger than this value (otherwise energy conservation would be violated). Therefore, this represents the maximum displacement of the mass-spring system, so it corresponds to the amplitude.

4. 0.19 m

We can solve this part of the problem by using the law of conservation of energy. In fact:

- When the mass is released from equilibrium position, the compression/stretching of the spring is zero: x=0, so the elastic potential energy is zero, and all the mechanical energy of the system is just equal to the kinetic energy of the mass:

E=K=\frac{1}{2}mv^2

where m = 1 kg and v = 0.5 m/s is the initial velocity of the mass

- When the spring reaches the maximum compression/stretching (x=A=amplitude), the velocity of the system is zero, so the kinetic energy is zero, and all the mechanical energy is just elastic potential energy:

E=U=\frac{1}{2}kA^2

Since the total energy must be conserved, we have:

\frac{1}{2}mv^2 = \frac{1}{2}kA^2\\A=\sqrt{\frac{m}{k}}v=\sqrt{\frac{1 kg}{7 N/m}}(0.5 m/s)=0.19 m

5. Amplitude of the motion: 0.44 m

We can use again the law of conservation of energy.

- E_i = \frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2 is the initial mechanical energy of the system, with x_0=0.4 m being the initial displacement of the mass and v_0=0.5 m/s being the initial velocity

- E_f = \frac{1}{2}kA^2 is the mechanical energy of the system when x=A (maximum displacement)

Equalizing the two expressions, we can solve to find A, the amplitude:

\frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2=\frac{1}{2}kA^2\\A=\sqrt{x_0^2+\frac{m}{k}v_0^2}=\sqrt{(0.4 m)^2+\frac{1 kg}{7 N/m}(0.5 m/s)^2}=0.44 m

6. Maximum velocity: 1.17 m/s

We can use again the law of conservation of energy.

- E_i = \frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2 is the initial mechanical energy of the system, with x_0=0.4 m being the initial displacement of the mass and v_0=0.5 m/s being the initial velocity

- E_f = \frac{1}{2}mv_{max}^2 is the mechanical energy of the system when x=0, which is when the system has maximum velocity, v_{max}

Equalizing the two expressions, we can solve to find v_{max}, the maximum velocity:

\frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2=\frac{1}{2}mv_{max}^2\\v_{max}=\sqrt{\frac{k}{m}x_0^2+v_0^2}=\sqrt{\frac{7 N/m}{1 kg}(0.4 m)^2+(0.5 m/s)^2}=1.17 m/s m

4 0
3 years ago
Read 2 more answers
car 1 drives 45 mph to the west and car 2 drives 30mph to the east . from the frame of reference of car 1, what is the velocity
Naya [18.7K]
Distance between the two cars is increasing at the rate of 85 mph. 

A passenger in Car-1 says that he is at rest in his own frame of reference,
and Car-2 is moving away from him at 85 mph, toward the west.


6 0
3 years ago
Read 2 more answers
Please help me with this
mezya [45]

Answer:

.067 so C

Explanation:

I asked my sister who is in 2nd grade and she said it was right so you are good! =). have a great day!

5 0
3 years ago
Students can take the aspire test in ninth and grade
Simora [160]

<em>The answer is </em>Ninth <em>and </em>Tenth <em>grade so the answer would be</em> B

<em>I hope this helps you </em>


3 0
3 years ago
Read 2 more answers
Other questions:
  • The bar rides on parallel metal rails connected through R 25.6-2, so the apparatus makes a complete circuit. You can ignore the
    5·1 answer
  • A thermometer is placed in water in order to measure the water’s temperature. What would cause the liquid in the thermometer to
    13·2 answers
  • Stars release huge amounts of radiation from their surfaces while on the main sequence. why is this necessary if a star is to ma
    15·1 answer
  • Problem 1 An object with m1 = 5kg is attached to a spring of negligible mass. This mass/spring combination is then slid horizont
    6·1 answer
  • A bicyclist rides forward with a positive acceleration. How would her acceleration be different if she had less mass?
    5·2 answers
  • Are stained glass windows transparent, opaque or translucent
    11·1 answer
  • The graph represents the reaction 3H2 + N2 2NH3 as it reaches equilibrium. Based on the graph, which two statements about this r
    5·1 answer
  • Hey I need help can someone help me out, please
    12·1 answer
  • Which statement is true? A) Cells come in different shapes, but are all about the same size—very, very small. B) Cells come in di
    10·1 answer
  • This distance from the Earth to the Sun given above is a standard for measuring other distances in the solar system and is calle
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!