Answer:
Its position after 4 seconds is 62 meters.
Explanation:
It is given that,
The acceleration of the particle is given by equation :

Also, 



At t = 0,
. So, c = 3

Also,
, s is the position



At t = 0,
. So, c' = 10

At t = 4 s

s = 62 m
So, at t = 4 seconds the position of the particle is 62 meters. Hence, this is the required solution.
It would be the first option, A
because u use the equation: W = m*g
<span>Since the wheel start from rest. angular acceleration,
θ=1/2αt²
14=1/2α x 8.7²
α= 0.3699 rad/s²
moment of inertia of loop= mr²= 4.1x0.37=1.517 kgm²
torque=T= lα
T= 0.5611Nm= 0.56Nm to significant figure
Disc
moment of inertia of disc= 1/2mr²
Required torque value= 0.28Nm
So,
I= 1/2X 4.1X 0.37²= 0.280 Kgm²
T= Iα = 0.280 X 0.3699= 0.10 to two significant figure</span>
It has many different colors without gaps.