Find the volume of the bottom and top separately and then add them.
Cylinder volume is the area of the bottom times the height
(22/7)(5^2)•175=13750 ft^3
The volume of a sphere is
V=(4/3)(22/7)r^3
where r is the radius. Here that's also 5 since it fits on the cylinder.
Also we only want half the sphere so use
V=(2/3)(22/7)•5^3=261.9 ft^3
Which we round upto 262.
Now add the parts together
13750+262=14,012 ft^3
Answer:
The force of friction acting on block B is approximately 26.7N. Note: this result does not match any value from your multiple choice list. Please see comment at the end of this answer.
Explanation:
The acting force F=75N pushes block A into acceleration to the left. Through a kinetic friction force, block B also accelerates to the left, however, the maximum of the friction force (which is unknown) makes block B accelerate by 0.5 m/s^2 slower than the block A, hence appearing it to accelerate with 0.5 m/s^2 to the right relative to the block A.
To solve this problem, start with setting up the net force equations for both block A and B:

where forces acting to the left are positive and those acting to the right are negative. The friction force F_fr in the first equation is due to A acting on B and in the second equation due to B acting on A. They are opposite in direction but have the same magnitude (Newton's third law). We also know that B accelerates 0.5 slower than A:

Now we can solve the system of 3 equations for a_A, a_B and finally for F_fr:

The force of friction acting on block B is approximately 26.7N.
This answer has been verified by multiple people and is correct for the provided values in your question. I recommend double-checking the text of your question for any typos and letting us know in the comments section.
Answer:
Explanation:
Energy stored in a capacitor
= 1/2 CV²
C is capacitance and V is potential of the capacitor .
When capacitor is charged to 24 V ,
E₁ = 1/2 x 2.4 x 24 x24 = 691.2 J
When it is charged to 12 volt
E₂ = 1/2 CV²
.5 X 2.4 X 12 X12
= 172.8 J
In this case to find the weight of an object you must use the formula.
W = mg