Answer:
a.6373.5 N
b.-3837.6 N
Explanation:
Mass of roller coaster=m=1040 kg
Radius=r=24 ,
a.
Normal force=
According to question

Where 
Substitute the values



b.




Answer:
The correct answer is "64 J".
Explanation:
The given values are:
Mass,
m = 52 kg
Velocity,
v = 6 m/s
Mechanical energy,
= 1000 J
Now,
The gravitational potential energy will be:
⇒ 




Answer: P = 36.75W
The additional power needed to account for the loss is 36.75W.
Explanation:
Given;
Mass of the runner m= 60 kg
Height of the centre of gravity h= 0.5m
Acceleration due to gravity g= 9.8m/s
The potential energy of the body for each step is;
P.E = mgh
P.E = 60 × 9.8 × 0.5
PE = 294J
Since the average loss per compression on the leg is 10%.
Energy loss = 10% (P.E)
E = 10% of 294J
E = 29.4J
To calculate the runner's additional power
given that time per stride is = 0.8s
Power P = Energy/time
P = E/t
P = 29.4J/0.8s
P = 36.75W
There are a lot of same examples that you may have worked before, where the mass on a spring uses a classics when it comes to mechanics. So in this system, always put in your mind that there is an enormous quantum standard that one can use in the equation. It should be 2.10x10 raise to a negative sixth. J.